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Abstract

The purpose of this research was to evaluate the

applicability of Bayesian statistical methods to the problem

of determining cruise missile component reliability. There

were three objectives: 1) to develop models incoirorating

Bayesian reliability concepts that can be used to predict

component reliability based on data available in a program

transitioning from development to production; 2) to

determine the model's validity in comparison with classical

statistical models; and 3) to assess the accuracy of both

approaches against actual cruise missile flight test

history.

A total of six models were developed for the failure

rate of the Tomahawk Cruise Missile Guidance Set using both

exponential and binomial distributions. The flight test

data seemed to belong to another failure distribution, and

was not useful as a measure of performance as had been

proposed.

The Bayesian Expert Information Model provided

reasonable point estimates of the failure rate and markedly

shorter 90% confidence intervals. Tn general, the Bayesian

models had confidence intervals that were shorter than the

classical statistical inference models, allowing a more

accurate decision-making process.

vii



Future effort in this field could be directed toward

applying these models to other weapon systems or components.

Other applications could include using the Bayesian a~proach

in the Aeronautical Systems Division Avionics Integrity

Program (AVIP) to increase the Failure Free Operating Period

of components, or in the assessment of the reliability of

foreign technology based on partial information.
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APPLICATION OF BAYESIAN RELIABILITY CONCEPTS TO CRUISE

MISSILE ELECTRONIC COMPONENTS

I. Introduction

General Issue

The reliability of electronic components in United

States Air Force weapon systems greatly contributes to the

overall weapon system mission reliability. Before a

decision to proceed with weapon system production can be

made, the Air Force has an obligation to verify these

reliability values or demonstrate that they can reasonably

be expected to be attairý.d Juring the early production

testing of hardware. The type of statistical analysis used

toestablish the confidence in reliability predictions can

influence the amount of testing necessary. The accepted Air

Force approach to date uses "classical" statistical

inference techniques that require large data samples to

generate reliability predictions with confidence intervals

constrained enough to be useful for management decisions.

In order to make a meaningful reliability prediction

(one with a narrow band of high confidence) a large amount

of test data must be accumulated. This usually occurs at a

time when both funding and test assets are in critically

short supply and the time required to accomplish the testing

can threaten program production authorization. Testing is

generally limited; unidentified component deficiencies, even
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if later detected, may impact operational readiness and

mission reliability or necessitate costly retrofits.

Problem Statement

Can a reliability model based on Bayes' Theorem be

developed that better predicts component reliability using

minimal test data and provides the same or better levels of

confidence than classical statistical inference methods?

Research Objectives

The objectives of this research are: 1) to develop

models incorporating Bayesian reliability concepts that can

be used to predict component reliability based on data

available in a program transitioning from development to

production; 2) to determine the model's validity in

comparison with classical statistical models; and 3) to

assess the accuracy of both approaches against actual cruise

missile flight test history.

Scope

This research will be dealing with cruise missile

electronic components. Cruise missiles are unique hybrids

of missiles and aircraft in that tLIey perform most of the

functions common to manned aircraft without the

characteristic designed redundancy that tends to increase

aircraft mission reliability. Additionally, because they

are largely dormant systems, there is relatively little

cruise missile operational data for use in evaluating both

2



system and component reliability. There are many different

approaches that incorporate elements of Bayesian philosophy

in statistical decision theory. The next section will

identify and discuss some of these and contrast them with

the more prevalent classical inference view.

3



II. literature Review

Introduction

This literature review will consider current thinking

in the use of Bayesian concepts for making reliability

predictions of electronic components.

Justification

The defense posture of tht United States is based on
countering a numerically superior enemy with the combat
capability of qualitatively superior weapon systems.
To win under these circumstances, systems must perform
not just once but must sustain operational performance
over time. (7:1)

This phrase defines reliability as it is used in this

research and reflects a renewed Air Force commitment to

ensuring reliability in weapon systems. Concurrent with the

rising interest in reliability is an increase in spending on

research, development, testing and evaluation of new weapon

systems that consumed about one-sixth of the Department of

Defense budget in 1983 (38:1). Any savings in the testing

process that do not adversely impact reliability performance

are clearly desirable.

Plan of Development

This review will first introduce the Classical

Statistical Inference and Bayesian approaches from a

managerial perspective. Reliability concepts and

reliability testing requirements will be addressed, followed

by some classical statistical concepts. It then will

4



explain Bayesian statistical concepts and the various

testing applications described in the literature, finally

discussing the proposed model for this research.

Analysis of the Literature

Managerial Perspective. Air Force managers are tasked

with the respmnsibility of making weapon system acquisition

decisions. To provide themselves with a basis for a

particular decision, they consult the accumulated expertise

of engineers and statisticians. Often, there is a tendency

on the part of the manager to rely too heavily on the

analyses, making statistically significant decisions that

are compromised by limitations of the statistical theory

employed. Berger recounts an example from Pratt that

demonstrates this:

An engineer draws a random sample of electron tubes and
measures the plate voltages under certain conditions
with a very accurate voltmeter, accurate enough so that
measurement error is negligible compared with the
variability of the tubes. A statistician examines the
measurements, which look normally distributed and vary
from 75 to 99 volts with a mean of 87 and a standard
deviation of 4. He makes the ordinary normal analysis,
giving a confidence interval for the true mean. Later
he visits the engineer's laboratory, and notices that
the voltmeter used reads only as far as 100, so the
population appears to be "censored". This necessitates
a new analysis if the statistician is orthodox.
However, the engineer says he has another meter,
equally accurate and reading to 1000 volts, which he
would have used if any voltage had been over 100. This
is a relief to the orthodox statistician, because it
means the population was effectively uncensored after
all. But the next day the engineer telephones and
says, "I just discovered my high-range voltmeter was
not working the day I did the experiment you analyzed
for me." The statistician ascertains that the engineer
would not have held up the experiment until the meter
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was fixed, and informs him that a new analysis will be
required. The engineer is astounded. He says, "But
the experiment turned out just the same ... I learned
exactly what I would have learned if the high-range
meter had been available. (3:24-5)

The difference between the engineer and the

statistician in the above example is one of philosophy. The

statistician is subscribing to the classical statistical

inference approach, while the engineer is intuitively

describing the Likelihood Principle, which is the basis for

the Bayesian approach. This principle will be explained in

greacer detail later in this review, but it in essence is

stating that only actually observed samples have a bearing

on the determination of a population characteristic. The

key point lies in recognizing the utility of statistical

theory as a tool for decision-making rather than as an end

to the means.

Approach Contrasts. The fundamental difference between

the two approaches can be seen in Figure 1 and Figure 2.

Here, sampling theory refers to classical statistical

inference theory.

Assumptive
Sampling Model < ------------------------

I A
I I

Sample Data ---- > Inductive ---- > Statistical
Reasoning Inferences

Figure 1. Inferences Based on Sampling Theory (22:166-8)
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Assumptive < -------------------------------------
Sampling Model A

v 
IS~V

"Sample --- >
Data I

i --- > Bayes' -- > Deductive -- > Statistical
Assumptive I Theorem Reasoning Inference
Prior
Model __->

Figure 2. Bayesian Inference (22:166-8)

These approaches will be described in more detail

later, however, it can be seen that the Bayesian reasoning

process is deductive as opposed to the classical inductive

process. Martz also summarizes other characteristics of the

two approaches in Table 1.

Another criticism of the classical approach is its use

of what Berger calls "initial precision" as a measurement of

accuracy. Before an experiment is run, the researcher

somewhat arbitrarily selects a decision rule that defines

the level of precision. A common decision rule has an

initial precision of 90% when an A value = 0.10 is chosen.

This is appropriate for a long series of identical tests,

such as sampling products on a production line, where the

unknown true characteristic being tested would fall within a
6

given confidence interval in 90% of the whole series. In a

one time test, the "final precision" is of greater interest,

7



Table 1. Summary of Certain Characteristics
of the Sampling Theory and Bayesian Methods of

Statistical Inference (22:169)

Characteristic Sampling Theory Bayesian

Parameter of Interest Unknown Constants Random Variables

Prior Distribution Does not exist Explicitly Assumed

Sampling Model Assumed Assumed

Posterior Distribution Does not exist Explicitly Derived

Reasoning Inductive Deductive

Type of Confidence Probability
Interval Estimate Interval Interval

Past Experience Not Applicable Applicable

Purpose of Sampling Supply data for Confirm or Deny
Experiment Making Inferences Expected Perfor-

mance from Past
Experience

Quality of Inferences More Restrictive Depends on Ability
because of Ex- to Quantitatively
clusive Use of Relate Past Ex-
Sample Data perience to

Sample Data

Quantity of Bayes' approach usually requires less
Sample Data because ic utilizes relevant past data

i.e., what is the probability that the true value is

contained in the 90% (or any other) confidence interval

(3:18-9).

Berger identifies seven interrelated reasons for

considering the Bayesian approach.
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(i) Prior information is too important to ignore or
deal with in an adhoc fashion.

(ii) According to most "classical" criteria, the class
of "optimal" procedures corresponds to the class of
Bayes procedures, so one should select from among this
class according to prior information.

(iii) The Bayesian viewpoint works better than any
other in revealing the common sense features of a
situation and producing reasonable procedures.

(iv) The goal of statistics is to communicate evidence
about uncertainties, and the correct language of
uncertainty is probability. Only subjective
probability provides a broad enough framework to
encompass the types of uncertainties encountered, and
Bayes theorem tells how to process information in the
language of subjective probability.

(v) Axioms of rational behavior imply that any
"coherent" mode of behavior corresponds to Bayesian
behavior with respect to some prior distribution.

(vi) The Likelihood Principle see-is irrefutable, yet
the only general way of implementing it seems to be
through Bayesian analysis.

(vii) Bayesian posterior measures of accuracy seem to
be the only meaningful measures of accuracy. (37:2)

The mechanics of the classical statistical inference

and Bayesian approaches will be addressed in greater detail.

First, though, a general overview of reliability,

probability distributions, and testing will provide

background information for later discussions.

Reliability. Reliability is the probability that a

system or component operates without failure through a

specified time period (1:105). A failure is the partial or

total loss of function of a unit in such a way that its

intended purpose is impeded or stopped. An electric light

bulb is an example of a unit with a well-defined failure

9



mode (10:71). For the purposes of this research, a

component's reliability will be evaluated in terms of its

life and its ability to complete a specified task.

A component's life is defined as the difference in time

between when a unit begins to function and the instant that

a failure occurs (10:78). For a sample of components, this

life may also be expressed as a failure rate, which is the

ratio of failures occurring in a period of time to the

number of units that had no failures up to that instant

(1:105).

The failure rate has the general characteristics of a

"bathtub curve" when plotted against time (see Figure 3).

It starts with a short period of time with a large

decreasing failure rate akin to sliding down the inside of a

bathtub. This corresponds with a high failure rate due to

"infant mortality" or production defects that cripple the

component's function. The bottom of the bathtub curve

refers to the useful life of a component; it has the

smallest failure rate and failures during this period are

frequently categorized as random because the failure rate is

constant. At the end of the bathtub curve, the failure rate

increases sharply corresponding to the increasing number of

failures due to aging (20:84-6). Many component samples

experience both the infant mortality and aging phases;

techniques such as environmental stress screening have been

10



I I
Infant Wear-Out
Mortality

Useful Life
Failure
Rate

Time (t)

Figure 3. Bathtub Curve (20:84-86)

developed to handle the former and components can be removed

from the inventory prior to the onset of the latter

(15:3-5).

Probability Distributions. The failure rate for the

useful life of a sample of components may be described as a

random variable with one of several probability

distributions: exponential, binomial, normal, gamma, and

Weibull. The exponential distribution (1:106) has a

constant failure rate, , that is the reciprocal of the

Mean-Time-Between-Failure (MTBF), , and reliability,

R(t) = exp(-t* ) (1)



The binomial distribution can be used when a dichotomy

exists between the states a random variable can assume

within a population. For reliability purposes, it can

describe situations where components either successfully

complete or fail an event. Two assumptions are required: 1)

each of n sample items has the same chance p of being in a

certain state, and 2) the outcomes of the n sample items are

statistically independent (25:91-2).

For a sample of n units, the binomial probability

function (25:92) can be expressed as

n!
f(y) = ----------- py (l-p)n-y (2)

y! (n-y)!

where y is the number of successes. In this case, p is the

reliability of the component under test. The other

distributions have specific applications that will not be

discussed here (1:106-7).

"The instant at which a failure will occur cannot be

told in advance: this instant is random (10:145)." Although

we can describe the general failure probability

distributions, reliability testing is necessary to estimate

specific "numerical reliability characteristics (10:145)."

Reliability Testing. Testing is used to verify the

validity of theoretical reliability calculations, usually in

an environment as nearly representative of the operational

scenario as is possible. Ling and Arsenault identify four

12



underlying principles of reliability testing, including the

use of "statistically efficient tests chosen to minimize

cost and time to an accept/reject decision (1:336-7)."

MIL-STD-785 also states that reliability testing should

be "tailored for effectiveness and efficiency (maximum

return on cost and schedule investment) in terms of the

management information they provide (8:A-25)." The military

standard (8:A-25) points out a difference between

reliability values measured in early Reliability Design

Growth Testing (RDGT), which are not expected to correlate

with operational values, and those from final RDGT and

Reliability Qualification Testing (RQT) which must possess a

clear traceability to field requirements.

Reliability Confidence Testing (RCT) is a shortened

form of RQT sometimes used when funding and time do not

permit a complete RQT as described by MIL-STD-781. The

Cruise Missile Guidance Set Reliability Demonstration will

be considered to be this kind of a test. The next section

describes the hardware components and the objectives of this

test.

Cruise Missile Guidance Set Reliability Demonstration.

The Tomahawk Cruise Missile is an airbreathing turbofan

"missile designed to fly at high subsonic speed and low

altitude, striking targets with high accuracy at distances

up to 1500 nautical miles. There are conventional and

nuclear variants developed for the U.S. Air Force and Navy

13



designed to be launched from ground vehicles, ships, and

submarines. This research will consider only the Tactical

Land Attack Missile (TLAM) variants.

The heart of the TLAM missile is the Cruise Missile

Guidance Set (CMGS), which consists of a gyro assembly, a

radar altimeter, and an on board microprocessor/computer.

"Prior to launch, the launch location is loaded into the

system and during flight the CMGS uses terrain correlation

for navigation updating, While flying over land, the

downlooking radar computes terrain altitude profiles that

are compared with computer stored digital map data,

providing the basis for corrections to the missile

flightpath. The CMGS went through a substantial

configuration change midway through production, partially

due to accumulated producibility changes and minor

reliability improvements. Based on a perceived reliability

deficiency and lack of confidence in the configuration

change, the Secretary of the Air Force directed that

reliability demonstration testing be accomplished on bcth

CMGS configurations prior to field retrofit (21).

The CMGS Reliahi±ity Demonstration had two objectives:

1) provide a point estimate of the CMGS mission MTBF, and

2) determine the field environmental effects on mission

reliability. The test was divided into two phases

corresponding to the objectives; the primary differe!ice

being the sequence and severity of the thermal and vibration

14



cycles. These cycles were organized in such a fashion as to

simulate the environment experienced by the CMGS in

operational use. The sample to be tested consisted of units

taken from the field and verified to be in working order

prior to the test. Because of time and funding limitations,

"a limited number of sample units was used. In the event of

"a failure, the failed unit was repaired and put back into

the test. Test data was collected according to both the

number of mission scenarios successfully completed and total

time in test for each test asset. Specific details are

contained in the test plan (31:1.1-3.23).

Classical Statistical Inference

This section will provide some background material on

the classical statistical inference approach.

... inferential statistical analysis is concerned with
measuring the characteristics of only a sample from the
population and then making inferences, or estimates,
about the corresponding value of characteristics in the
population from which the sample was drawn. (13:9-10)

The total number of components in use in all of the

weapon systems can be defined to be the population. From

this population, a subset, or sample, of components can be

selected for testing when it is not practical to test or

measure each population member. This is certainly the case

when trying to determine the reliability of one-time use

items like cruise missiles. The sample is selected at

random, i.e. each member of the population has an equal

15



chance of being included in the sample, to validate

inferences that may be made to the population parameters.

There are two types of inferences that may be drawn

from sample statistics to population parameters -- point

estimates and interval estimation. A point estimate is a

single value that best approximates the true value of the

population parameter, but does not indicate how much

uncertainty is present. An interval estimate can specify a

probability that the sample statistic is within a certain

interval about the true population parameter. A point

estimate, such as the mean of a distribution, x, will differ

from the population parameter,A4, by some unknown amount of

sampling error, x =) JA± . If the sample size is large,

the sampling distribution and the distribution of sampling

errors will both be nearly normal by the Centr 4 ± Limit

Theorem. This results in an expression for the confidence

interval. based on the population standard error ,

(x - z*a) < ý& < (x + z*0a (3)

where z is the critical value associated with a specified

probability. In most cases, the population standard error

is not known, and must be estimated using the sample

standard error, s. The interval estimate obtained using s

is called an approximate confidence interval (13:135-143).

16



Bayesian Statistics

This section will discuss Bayes' Theorem and several

approaches toward its implementation in reliability testing.

One model, in particular, will be described that seems to be

useful for this research.

Bayes' Theorem. The Bayesian technique is easy to

explain, but its ramifications are more complex.

Suppose that there exists a set of mutually exclusive
and exhaustive events that are considered: it is known
in advance that one, and only one, of these events will
actually occur, but there is uncertainty about which of
these it will be. One begins by assigning a
probability to each of these events on the basis of
whatever evidence is currently available. Then if
additional evidence is subsequently obtained, the
initial probabilities are then revised on the basis of
this evidence by means of Bayes' Theorem. The initial
probabilities are known as prior probabilities in that
they are assigned before the acquisition of the
additional evidence bearing on the problem. The
evidence on which these probabilities are based is
therefore prior information.... The probabilities which
result from the revision process are known as posterior
probabilities. (24:1-2)

Bayes theorem (4:10) can be expressed by the following

equations:

P (y IM)P()
P(X~y) = f4)

P (y)

where P(XIy) is the posterior distribution of the

population given sample data y,

P(\) is the prior distribution ofA,

P(yil) is the likelihood function of ) given sample
data y, and

P(y) is a normalizing constant necessary to make

17



the posterior distribution integrate or sum
to one.

P (yIM)P (W)dX Xcontinuous
P(y) =

P (y X) P (A) A discrete

Likelihood Principle. In equation (4) above, the

posterior distribution is proportional to the prior

distribution multiplied by the likelihood function. Here

the likelihood function is defined as the probability of

observing the sample data y given the true population \.

The likelihood function.. .plays a very important role
in Bayes' formula. It is the function through which
the data y modifies prior knowledge of X; it can
therefore be regarded as representing the information
about X coming from the data. (4:11)

Prior Distributions. The continuous prior distribution

is often discretized to allow more tractable data

manipulation. Chay contends there is no longer any need to

approximate continuous prior distributions through

discretization because current computer calculations have

made their numerical integration accessible. Additionally,

care must be taken in subdividing the distribution into

discrete masses to ensure the areas of large mass accurately

portray true values (5:218). Conjugate distributions are

often used for priors because the posterior distributions

can be obtained relatively simply using analytical tools.

Again alluding to the availability of computational tools,

18



Chay makes the point that alternate distributions should be

considered as priors (5:216).

Martz and Waller identify characteristics of successful

Bayesian reliability analyses that include:

1. A detailed analysis of the prior that will be used

with documentation of data sources;

2. Use of a preposterior analysis to test the prior

with hypothetical data;

3. Clear, definitive descriptions of the posterior

distribution, with a sensitivity analysis of the resulting

Bayesian inferences with respect to the original prior

(22:189).

The preposterior analysis is used to assess the impact

that conflicting, contradictory, or confirming data samples

have when applied to the proposed prior. It consists of the

following steps:

1. Using the proposed prior, consider two sets of

hypothetical test data that seem to be likely and unlikely.

2. Compute the resulting posterior distributions using

Bayes' theorem for each case.

3. Examine the posterior distributions for

reasonableness based on the hypothetical test data. If the

results seem inconsistent, adjust the prior and repeat the

preposterior analysis (22:187). This adjustment often is
the target of allegations of test data manipulation. It is

important to keep the perspective that Bayesian reliability

19



analyses, like those used in classical statistics, are tools

for decision making, rather than expressions of an absolute

truth.

Bayesian Reliability Testing Approaches. This section

will address the current approaches in implementing Bayesian

concepts in reliability testing.

Classical testing was contrasted with the Bayesian

approach by Wonnacott. He pointed out the classical

dependence on the specified g or Type I error associated

with rejecting a true hypothesis. Often, the level of

acceptable error is less easily determined than the

hypothesis value being tested (17:149-157). McCrory made an

impassioned plea for the use of Bayesian techniques to save

"reliability testing from an early death by providing a

means to measure and express reliability quantitatively in a

more timely and cost effective fashion (23:20)."

Launer and Singpurwalla used Bayes' Theorem to propose

a model for detecting a deterioration in the system

reliability of one-shot missiles. Additionally, they wanted

to determine the marginal change in reliability since the

last test and to minimize the number of samples used for the

destructive testing (19:23-6). Another researcher working

with one-shot devices proposed a series of reliability test

plans which "...will be Bayesian in the sense that relevant

data from previous testing is to be used in attempt to

reduce the sample size required in subsequent testing
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(38:3)." He defined producer's and consumer's risks and

developed confidence intervals for the reliability

predictions (38:8-14).

Three research studies have addressed the problem of

determining system reliabilities based on component or

subsystem data. Lampkin has considered the use of several

expansion techniques to maintain precision in the

calculation of exact Bayesian intervals as the number of

subsystems in the reliability estimate increases (18:313-7).

Winterbottom was also interested in estimating Bayesian

intervals for system reliabilities based on component data.

He used exact and approximate methods both in a series of

structures (series, parallel, quorum, and others) and in the

case of mixed testing of components, where some are tested

pass/fail and some have exponentially distributed failure

times (36:1-43). Barlow has identified a couple of fast

algorithms to calculate Bayesian system reliabilities based

on individual component reliabilities. He investigated the

effect of increasingly large numbers of components within

networks (2:375-383).

A Rome Air Development Center report discusses the

Bayesian approach to structuring reliability tests. It

defines the producer's and consumer's risks and provides

guidelines for selecting test risks. Tne report also

compares classical statistical tests with Bayesian tests and
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concludes that the condition of the prior probability data

will dictate which approach is optimum (6:5-35).

Johnson and Utts were concerned with estimated Bayesian

means and confidence intervals of a normal population using

contaminated data. They used improper priors, which are

also relatively non-informative, and derived a posterior

that is approximated by a student distribution with specific

degrees of freedom, location and dispersion. The means and

confidence intervals were demonstrated to be very robust and

tolerant of outliers (12:8-16).

Kaplan proposed a "two stage" Bayesian procedure that

could be used to develop a prior when there is little

generalized industry data available. In his experiment,

there was a machine failure rate that could be determined

from three types of information. The first type,

engineering knowledge of the design and construction of the

machine, was used to prepare the first stage prior. This

prior was updated by the second type of information, past

test experience of similar machines, to form the first stage

posterior. This posterior was then used as the second stage

prior and updated to form a posterior with the third type of

information, current machine test data. The first prior was

the only distribution based on subjective rather than

quantitative inputs (16:1-3).

Kaplan also explored the use of Bayesian probabilistic

analysis to determine the failure rate of components in
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nuclear power plants. There, he also assumed a probability

distribution was provided by an expert source for use as the

prior. Uniform and nonuniform populations were considered

along with constant and age dependent failure rates

(14:5-20).

Expert Information Model. A model has been proposed by

Kaplan for determining the reliability of electronic "black

boxes". In its original form, it is a variation of a

binomial approach. This research will also consider a

derivative using an exponential distribution. A summary of

the binomial approach will be addressed first.

Our real interest ultimately, of course, is the
reliability of the complete system. This will become
known finally only from experience (i.e. tests and
operations), with the complete system itself. However,
such tests and operational data are usually very
expensive. Moreover, we often need to predict the
reliability of the complete system at early stages of
design and production, before any (or certainly many)
full system tests are done .... It is often the case
that, while we have little experience with the complete
system, we have considerably more information about the
individual boxes composing the system. (15:1)

The model is first introduced as a thought experiment

in which a large number of identical boxes, No, are

repeatedly put through an operationally realistic duty

cycle, or "mission". The number of boxes surviving a given

cycle i, Ni, divided by NO can be plotted against i cycles

on semilog paper to obtain a graph that represents the 3

phases of a component's life -- infant mortality, useful

life, and wearout (see Figure 4).
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(log)

Number of Cycles, i

Figure 4. Survival Curve for Boxes
(15:3)

This model assumes the useful life portion of the graph

has a slope, X , that is "the basic 'failure rate' of the

box measured in units of failures per box per cycle (15:3)."

Ni - Ni+
=+- (i and i+l in useful life) (5)

N.1

Note that this definition is not the same as was used

earlier in Figure 3 for the exponential model, where X was

measured as a function of operating time. It also assumes

that the slope, and therefore X, is nearly constant over the

useful life of the box.

Kaplan (15:7) establishes a discretization of the

distribution of lambda values from 0 to 1.0 for use in the

following Bayesian expression:
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Po ) P(E I(6)
Pj ( IE) = (6)

Po ( )p(EI),j)
J

where,

p(x.IE) = the posterior probability that the true
J value of A is Xj, conditional on evidence E,

p 0 (j) = the prior probability that the true valueA 0is Xj before evidence E existed,

E = the evidence or information discovered, and

p(EIXj) = the likelihood that given the true value of A

is Aj, the evidence E would be obtained.

The first model uses an exponential distribution as the

likelihood function. Assuming Nt is the number of boxes

that remain unfailed at time t, and N0 iz the number present
-At

at time zero, then Nt = N0 e and there is a function

f(t) such that f(t) = Nt/NO = e-Xt . This is the fraction

of systems that remain unfailed at time t (17:11). The

probability of k failures in time t can be represented by

the Poisson distribution (27:8).

(Xt)k e-t

Pk(t) =- (7)
k!

This yields the following Bayesian posterior expression for

the exponential model (17:25):
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p (t)k e-it)

p(XlE) = ---------- (8)
n k -(.t)

p t) e
-il

The likelihood function (15:7) for the binomial model

can be expressed for E = {k failures in N cycles) as

N! (•j)k (l_• N-k

P(EIX)- ----------- ---- (9)
k!(N-k)!

Kaplan identifies some possible types of evidence that

may provide information about the reliability of boxes (see

Table 2). The following sections describe Kaplan's approach

to using each of these evidence sources. In each case,

evidence that is considered less precise is used to form a

prior distribution that is then updated based on the new

evidence.

Type El - this is data that is presumed to be most

representative of the true box failure rate. The prior

probability distribution would be based on evidence types

E2.. .Ell and updated using the failure rate calculated from

El data (either binomial or exponential) to estimate x

(15:8).

Type E2 - this is data that was obtained from simulated

testing. A similar process is followed in using a prior

distribution generated from evidence E3... Ell, but in this

case, the posterior distribution will be more representative
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Table 2. Possible Types of Evidence
"Relevant to Box Reliability (15:21

Evidence Description

El Direct experience of performance of the box, as
part of the complete system in actual use.

E2 Experience of performance of the box, as part of
the complete system, but not in actual use.

E3 Experience with performance of the box in isola-
"tion, outside the system, simulating actual use.

E4 Performance of the box in screening tests.

E5 Performance of the box in other tests.

ES Knowledge of the reliability of subcomponents.

E7 Performance of earlier versions or designs.

E8 Experience of the same or similar boxes in
other operating environments.

E9 Calculations, physics of failures, analyses.

El0 Expert judgements, general engineering
knowledge, failure mechanisms, etc.

Ell Other.

of a failure rate X2 for the box in a simulated environment.

Accordingly, the resulting posterior distribution may be

modified by engineering judgement to reflect the increased

uncertainty before it is used as a prior for evidence El

(15:13).

Type E3 - this data generally comes from testing such

as Production Reliability Acceptance Testing (PRAT) and

RQT/RCT. PRAT is used to verify that production processes
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nave not degraded the designed reliability that was verified

through RQT/PCT. The former consists of a large number of

boxes tested once, while the latter is usually a small

number of boxes tested repeatedly. In both cases, the focus

is on the number of cycles successfully completed. As for

evidence E2, the additional uncertainty due to differences

in testing can be abrogated through modification of the

posterior before it is used as a prior (15:14-16).

Type E4 - this data usually reflects the effects of an

environment that is more severe than required operationally.

As described earlier, manufacturers use Environmental Stress

Screening to precipitate failures that will occur in the

infant mortality period. The process is repeated until a

unit passes through the cycles without a failure. ESS can

then be defined as consisting of a burn-in cycle (which

should have a significantly greater X) and a failure free

cycle (which should have a X closer, but still higher than

the operational Xo value). Rather than using these to

update a prior distribution from other evidence, it is more

useful to plot the distributions as upper bounds for

(15:17-20).

Type E5 - this type of data can be handled various

ways, depending on the characteristics of the testing. If

it is a box level acceptance test at ambient conditions, it

may be possible to establish the lower bounds of % for use

in the same fashion as evidence E4. If the test is more
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representative of the operational environment, it can be

used to update a prior based on evidence E6...Ell and form

the prior for evidence E3 (15:21).

Type E6...Ell - this data is usually less precise than

earlier test data. However, the use of every available

piece of information is totally in consonance with the

Bayesian philosophy. The specific application of each type

of analysis or prior experience with an earlier generation

of the box will depend on the circumstances. Suffice to

say, the resulting distribution should be fairly broad to

reflect its highly uncertain nature (15:22-23).

Having defined the problem area and some of the ongoing

work in the field of Bayesian statistics, it is logical at

this time to proceed to a discussion of the methodology

followed in this research.
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III. Methodology

Overview

This chapter describes the methodology used to

accomplish the above stated research objectives. This brief

overview of the methodology will be followed by descriptions

of the data which will be analyzed. The classical

statistical inference approach will be examined from two

points of view: as a binomial distribution model, and as a

constant failure rate exponential distribution model. In

addition to the binomial and exponential distribution models

referenced above, the Bayesian reliability analysis will

also consider an expert information model. A discussion of

the types of data available as sources to a Bayesian expert

information model will be followed by a description of the

steps involved in aeveloping the model itself. A comparison

of the point estimates and confidence intervals obtained

from all the Classical and Bayesian models will be made with

respect to those obtained from actual flight test history.

Data Sources

The data obtained from the CMGS Reliability

Demonstration will be used to make statistical inferences

about the true failure rate and reliability of the CMGS.

The three phases of this test will each be examined

separately and finally combined into a single data set in

each of the following six different models: 1) the
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classical exponential, 2) the classical binomial 3) the

Bayesian exponential, 4) the Bayesian binomial, 5) the

Bayesian expert information exponential, and 6) the Bayesian

expert information binomial models.

Flight Test Data

The flight test database consists of data from three

variants of the Tomahawk Cruise Missile which use

essentially common configurations of the CMGS. Flight test

data for the current configuration will be used to calculate

a point estimate and confidence interval for the true

failure rate and reliability. Because the data can be

evaluated both in terms of flight time before failures and

number of successful flights, both exponential and binomial

d'I.stributions will be used.

The flight times have been accurately recorded, but

those times are not true indicators of the CMGS unit ages.

The CMGS computer does have an Elapsed Time Indicator (ETI),

but the clock is not reset every time the unit is

refurbished and there appears to be little correlation

between the failure times and the ETI clock readings. Since

the exponential model is based on a constant failure rate,

the true age of the unit is not required as long as it can

be determined to be in an operational condition before the

flight test occurs. This would be sufficient to establish

the baseline from which estimation of the failure rate could

proceed.
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The flight test data will be evaluated to attribute

each failure to a specific component. Components will be

presumed to have been functional in all successful flight

tests or flight test failures due to other components or

factors. Assuming the missile achieved its system level

reliability requirement, the flight test results will be

presumed to be an accurate reflection of the component's

operating environment and mission reliability.

Flight Test Exponential Point Estimate. In order to

use an exponential distribution, an evaluation of the flight

test failure data must be made. Only the failed CMGS units

and their associated failure times will be compared with a

hypothetical random distribution derived from the sample

failure rate, R/T, as in (12). The sample failure rate

includes test time from units under test that did not fail.

A Kolmogorov-Smirnov Goodness of Fit test will be run to

determine whether the failed items follow an exponential

distribution. If there is not sufficient cause to reject

the assumption that it is an exponential distribution, then

the sample failure rate will be used as the maximum

likelihood estimator for A.

Flight Test Exponential Confidence Interval. The same

confidence interval equation will be used to estimate the

interval for 90% confidence as in equation (13) above. The

confidence limits for tthe exponential distribution (22:122)
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may be approximated using the X2(n) distribution where

X2(n) is the 100(1l4) percentile of the X2(n) distribution.

The 100(1-4)% TCI for JS

X 2 at/ 2 (2R) X 2 
1 - AQ(2R+2)

2t 
2t

Models

The first two classical models, (1 & 2), will use only

the CMGS Reliability Demonstration data to derive point

estimates and confidence intervals for the true failure rate

of the population. The Bayesian exponential and binomial

models, (3 & 4), will use early flight test results as the

basis for the priors. They will then be updated with the

CMGS Reliability Demonstration data to form the posterior

distributions, from which point estimates and confidence

intervals will be obtained. The Bayesian expert information

models, (5 & 6), will consider a variety of data sources as

described by the Kaplan model, (see Table 2), to establish a

series of priors culminating in a final prior. The initial

prior will be established based on information evaluated by

an expert source. As in models (3 & 4), the prior

distribution will be updated with the results of the CMGS

Reliability Demonstration, using both exponential and

binomial distributions. Point estimates and confidence

intervals for the failure rate will be determined form the

resulting posterior distributions. The mechanics of

33



calculating the classical and Bayesian approaches will be as

described in the following sections.

Classical Models

A reliability prediction will be made based on a point

estimate of the sample data, using a maximum likelihood

estimator. The uncertainty pertaining to the prediction

will be described in terms of a two-sided confidence

interval. The predictions will be accomplished using two

assumed probability distributions. The first will be an

exponential distribution with a constant failure rate and

the second will be a binomial distribution. The total time

in the test and the corresponding failures will be used for

the exponential distribution, while the successful

completion of each individual portion of the tests will be

scored as events for the binomial distribution. The sample

data will be fit to the distributions using a Komolgorov-

Smirnov (KS) Goodness of Fit test.

The Classical Exponential Approach. Assuming the data

are distributed exponentially, point estimates for the

failure rate, A, and a 90% confidence interval about A will

be calculated.

Classical Exponential Point Estimate. The maximum

likelihood estimator for the exponential distribution is R/T

where R is the number of failures, presumed to be a random

variable, and T is the total time on test.
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Classical Exponential Confidence Interval. The

confidence limits for the exponential distribution may be

approximated using the X2(n) distribution where X2 (n) is

the 100(1-0) percentile of the X2(n) distribution.

In the case of Type I/time truncated testing with
replacement, the sufficient statistic R (the random
number of failures) follows a Poisson distribution2 ...
and the relationship between the Poisson and the X (n)
distributions permits approximate inferences to be
based on the X (n) distribution. (22:120-1)

The 100(1-A)% TCI for (22:122) is

X2A/2 (2R) X21- o/2 (2R+2)
# (10)

2t 2t

The Binomial Approach. The binomial distribution has a

maximum likelihood estimator p' such that the probability of

survival is the ratio of X survivors from a set of n units

placed into a test of given duration (22:53).

X
p = --- (11)

n

The 100(1-d)% TCI may be approximated using a

transformation to the F distribution (22:56) given by the

formula

x

x+ (n-x+l) F1 1'2 (2n-2x+2,2x)
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(x+1)F 1 - 2 (2x+2,2n-2x) (12)

(n-x)+(x+l)Fl_/2 (2x+2,2n-2x)

Bayesian Models

The Data Sources. As a weapon system is transitioning

from development to production, there is both a wealth and

paucity of available data upon which to base reliability

predictions. Generally, the engineering department is long

on analyses and comparisons to existing systems, while the

test department has little in the way of operational data;

being limited chiefly to testing with engineering

prototypes. There is little disagreement that neither of

these by themselves constitute a data base with high

validity. It is possible to identify other data sources

which when compiled in a model can produce a more

comprehensive picture of component reliability. These

include:

1) operational system level test data,
2) system level acceptance testing,
3) component level acceptance testing,
4) environmental stress screening data,
5) qualification testing data,
6) design analyses, such as Mil-Hdbk-217D,
7) comparisons to preceding weapon systems.

The conservative application of the Bayesian approach

uses old flight test data to develop the prior. In the

event of insufficient flight test data, system level and

possibly box level acceptance test data could be used.

Acceptance testing may not be representative of the

operational environment, and the objective use of these
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types of test data can introduce additional risk to the

analysis.

The Bayesian Exponential Approach. Assuming an

exponentially distributed failure rate, the distribution of

failures in a fixed total test time can be described by the

Poisson distribution (22:255).

e-At* (A't) s
p(s failures in total time tI) = 1-------------- (13)

S!

where, \,t > 0, s = 0, 1, 2, ..... Because not all of the

flight test units failed during the test and failed units

were replaced by new units for subsequent tests, the flight

test data may be considered to be Type I, time truncated,

with replacement (22:119).

Bayesian Exponential Prior. This Poisson sampling

process can use a gamma prior distribution to achieve

maximum flexibility and ease the mathematical burden of

calculating the posterior distribution. Because of these

two reasons, the gamma(A,$) prior distribution (22:289) is

one of the most widely used for A, and has the following

probability density function:

0 A-1 -SA
g-(A;--) = * e (14)

r (4)

where A, , and A > 0
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The shape parameter, Q, and the scale parameter, $ , may

be interpreted as the "pseudo number of failures" and

"pseudo length of time" for the prior life test. The

"pseudo" refers to the supposition that these are the values

that would best fit a prior appropriate for the experimental

data (22:289).

The simplest estimates for o and 0 are the number of

flight test failures and total test time.

Bayesian Exponential Preposterior Analysis. A

preposterior analysis will be conducted using two

hypothetical samples of data. The first set, considered

likely, is one failure in 256 hours, the CMGS MTBF (29:1D).

The unlikely data set consists of ten failures in 256 hours.

Posteriors for each will be calculated using the gamma (A,$)

prior distribution and evaluated for realism. The prior

distribution will be adjusted if necessary.

Bayesian Exponential Posterior. The resulting

posterior distribution for the gamma(dS,$) prior distribution

is gamma(s+A,t+a), where s and t are the number of failures

and total test time from the CMGS Reliability Demonstration.

The probability density function (22:290) is described by

(t+15) s+Ok s C- ( +•g(Als;J,) = t * As+d-l* e (t+•)? (15)

r(S+A)

where \ > 0.

Bayesian Exponential Point Estimate. The Bayesian

point estimator is the mean of the posterior distribution,
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which, under the squared error loss function, is

s + 4
E (AIs;•,B) =(16)

t+

where s + 4 is the combined number of failures and t + P is

the combined total test time (22:292).

Bayesian Exponential Probability Interval. The

Total Bayesian Probability Interval (TBPI) can be

constructed by using chi square (X 2) percentile values for

(2s + 206). A 90% confidence interval will be calculated for

comparison with intervals from the other models. The upper

and lower interval endpoints for the'100(1-4)% TBPI (22:294)

are

X2A/2(2s + 2 A) X2
1 _,/ 2 (2s + 2)(

- - - - - - - - - ---(17 )
2 (t + 0) 2(t +P)

The Bayesian Binomial Approach. For the binomial case,

the family of A(x,n) distributions will be used to calculate

both the prior and posterior distributions because they are

relatively easy to calculate and may be adapted to a number

of situations. For example, the selection of x and n can be

based on the analyst's knowledge and experience with the

system. This can have the effect of increasing or

decreasing the importance of the prior on the resulting

posterior distribution.
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Bayesian Binomial Prior. The A(x0,n0)

distribution is a conjugate prior for the binomial sampling

model. The choice of x0 , the "pseudo number of survivors,"

and n0 , the "pseudo sample size," can be made on the basis

of the analyst's prior knowledge, or based on the results of

earlier objective testing.

Weiler (1965) shows that the effect of assuming a
8(n ,x ) distribution, when in fact the true prior
disPrigution is not of the beta type, is negligible in
many practical applications. He shows that rather
severe deviations in the beta prior parameter values
produce only slight changes in the corresponding
posterior distributions. (22:265)

For this research, earlier flight test data will be

used to estimate values for x0 and n0 that fit the 9(x0,n0

distribution. The simplest estimate for x0 is the number of

CMGS units that have successfully flown in flight testing.

Because there was a significant configuration change in the

CMGS computer, only flight test data pertaining to the newer

configuration will be used to develop this prior

distribution. Similarly, the simplest estimate for n0 is

the number of guidance sets that have been flight tested.

Bayesian Binomial Preposterior Analysis. As above

for the Bayesian exponential approach, a preposterior

analysis will be conducted using two hypothetical data sets.

The likely sample will consist of 99 successes out of 100

attempts and the unlikely sample will be 90 successes out of

100 attempts. An evaluation of the prior will be made based

on these results.
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Bayesian Binomial Posterior. The resulting

posterior distribution is also a beta distribution of the

form (x+x 0 ,n+n 0 ), where x and n are the observed survivors

and sample size from the experiment being used to update the

prior. In this case, x and n will be the number of missions

"successfully completed and the number attempted,

respectively. The probability density function (22:266) of

the new posterior distribution is

r (n + n 0) - - -
g(plx;x0,n 0 ) = ,- ---- -n- ---

r(x + x 0 ) r(n + n 0 - x - x 0 )

(x+x 0 ) -1 (n+n 0-x-x0 )- (18)p * (l-p) (8

where 0 < p < 1.

Bayesian Binomial Point Estimate. A point

estimator for the probability, p, which represents

reliability in this sampling scenario, can be determined

from the posterior mean (22:267).

x + x 0
E(P~x;x 0 ,n 0 ) = (19)

n + n

Bayesian Binomial Probability Interval. Again

assuming a S(x 0 ,n 0 ) prior, the Total Bayesian Probability

Interval (TBPI) can be constructed from a transformation to

the F(nl,n 2 ) distribution. A 90% confidence interval will
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be calculated for comparison with intervals from the other

models. The upper and lower interval endpoints (22:270) for

the 3.00(1-A)% TBPI are

Sx + x0

ix+x0 +(n+n 0 -x-x 0 )Fl 1 _, 2 (2n+2n 0 -2x-2x 0 , 2x+2x 0 )

(x+x 0 )FI_/ 2 (2x+2x 0 , 2n+2n 0 -2x-2x 0 )-------- (20)
n+n 0 -x-x 0+ (x+x 0 ) F 1 -4/ 2 (2x+2x 0 , 2n+2n 0 -2x-2x 0 )

The Expert Information Approach. The Kaplan model

described earlier will be used with some of the above data

sources to make the most accurate reliability prediction

possible. The chief advantage in using Bayes' Theorem in a

predictive model is its ability to incorporate data normally

excluded as being "subjective" in classical approaches.

This data is analyzed and the appropriate subjective

probability distribution (SPD) describing the data is used

to develop the prior distribution. The SPD is a discrete

distribution whose total area sums to one. Expert

information can be used to evaluate each of the data sources

used in preparing and combining the prior distributions to

form the final prior distribution.

Both the exponential and binomial approaches will be

investigated using the following Bayesian relationships:

p(X IAi)
p IX) = p(Xi) (21)

p(X)
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where,

p(QiIX) = probability of failure rate hi, given the
experience X

p(.) = probability of Xi, prior to having X

p(X) = prior probability of X, also

= :p(X)p(Xlxi), for all discrete values of Ai

for the exponential:

p(XlA.i) = probability of X, for each given •.

(Ni * T)n
1• exp*(-Ai*T),

n!

with n failures in time T,

for the binomial:

p(XJXi) = probability of X, for each given Xi,

n! k n-k

k! * (n-k)!

with k failures in n attempts.

Bayesian Expert Information Prior. Using the

definitions of evidence presented by Kaplan in Table 2, the

following data will be used to develop the iterative priors.

Step 1. Type E8 - The computer used in the CMGS is its

most complex component and bears the greatest allocated

reliability requirement. It is also very similar to the

Inertial Navigation Element used in the Air Launched Cruise

Missile for the past six years. A subjective evaluation of
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the CMGS reliability will be based on a comparison of ALCM

INE field performance data (35) to its reliability

specification. For example, if the ALCM INE has a

demonstrated MTBF of 500 hours versus a specification value

of 400, then the probability distribution for the CMGS could

be adjusted upward from its specification value of 300 to a

value 25% higher.

The specific amount of adjustment will be based on an

estimate provided by Mr. I. Hugh Lynn, the former GLCM Chief

Avionics Engineer. He was responsible for conducting

technical evaluations during the CMGS Reliability

Demonstration. Mr. Lynn has been a practicing government

engineer for the past 22 years and is currently the Computer

Resources Branch Chief (ASD/ENASC) for the Aeronautical

Systems Division, Wright Patterson AFB, OH. His experience

is typical of Department of Defense individuals who would be

tasked to make this type of an evaluation for current weapon

systems (21).

Issues to be considered include how many components in

the CMGS do not have comparable functions in the INE and how

the ALCM and Tomahawk cruise missile environments compare.

The MTBF estimates will be converted to failure rates to

make the comparisons more tractable. Because there is

uncertainty in these estimates, a range of failure rates

with associated probabilities can be plotted to form the

SPD. This distribution is the First Prior (see Figure 5).
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Figure 5. Subjective Probability Distribution (SPD)
for the CMGS Based on ALCM INE Field Data

Step 2. Type E6 - CMGS design weaknesses identified in

the Ground Launched Cruise Missile Flight Critical Item

Investigation (11) are the basis for updating the First

Prior distribution. The informed source (Mr. Lynn)

evaluates the impact of each weakness on the designed

reliability to develop a likelihood that can be used to

update the First Prior. The resulting posterior

distribution is used as the Second Prior for the next

iteration involving simulated testing.

Step 3. Type E2 and E4 - Performance of the CMGS in

acceptance testing and failure free Environmental Stress

Screening (ESS) testing is used to update the Second Prior

to reflect the performance of the CMGS in similated

environments. Additionally, CMGS performance in early ESS

cycles will be evaluated as a lower bound on MTBF. This is

due to the presence of manufacturing defects that are
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precipitated as failures in early ESS temperature and

vibration cycles. The design posterior distribution is

updated by this simulated testing SPD to create the Third

Prior.

At this point, the analysis will independently pursue

both exponential and binomial approaches to continue

developing the final priors and estimate CMGS failure rates.

The SPD used for the Third Prior, as well the resulting

posterior distributions will be updated using Bayes' Theorem

and the Poisson model for the exponential approach. For the

binomial approach, Bayes' Theorem and equation (14) will be

used.

Step 4a. Type El - (Exponential) - The Third Prior

distribution is updated by flight test results to form the

Final Prior. The flight test database will be examined to

ensure only flight data from comparable CMGS configurations

is included in the analysis. These configurations are

defined as those guidance sets manufactured in the fiscal

year FY 1983 and since then. The number of failures and

total mission time will be used to obtain probabilities 1:-r

each failure rate, 4 i" These probabilities form the Final

Prior.

Step 4b. Type El - (Binomial) - The Third Prior is

similarly updated by flight test results in the form of the

numbers of successes and attempts. Equation (14) will be
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used to obtain probabilities for each Ai that will form the

Final Prior.

Bayesian Expert Information Posterior. The

Final Priors will be used to obtain pcsterior SPD's for each

of the three phases of the CMGS Reliability Demonstration

and for a combination of all three phases. Mission time

will be assumed to be a standard three hour flight test time

for use in calculating the reliability according to equation

(1), RCMGS = exp(-3*A)..

Step 5a. (Exponential) - The number of CMGS Reliability

Demonstration test hours is adjusted by a series of k-

factors to allow comparison to the standard mission time.

This research accepts the use of the specified k-factors

without examination. The number of failures is used with

the total test time to calculate the posterior distribution

based on the Final Prior distribution. This posterior

distribution will be evaluated to determine a point estimate

for X and a Total Bayesian Probability Interval (TBPI).

Step 5b. (Binomial) - The binomial approach will focus

on the number of successful missions that were accomplished

out of the total number attempted. The Final Prior from

Step 4.b above will be updated by this information to form

the resulting posterior distribution. As in Step 5.a, both

a point estimate and a TBPI will be determined for A.

Bayesian Expert Information Point Estimate and

Prcbability Interval. The resulting posterior distributions
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will be evaluated to obtain both point estimaces for the

failure rate, *, and the 900 Total Bayesian Probability

Interval (TBPI).

Step 6. The point estimate is the expected value of

E(A) =Xp(A) * (22)i 1 2

and the TBPI is the interval that encompasses 90% of the

area under the SPD while maximizing the sum of the

probability densities associated with each point in the

interval.

The methodology used to develop each of the six models

will be applied to the CMGS Reliability Demonstration data

and the results will be described in Chapter IV. The six

model predictions will be compared with current Tomahawk

flight test data to ascertain the accuracy of each model.

An evaluation of both the approaches (Classical versus

Bayesian) and the choice of distributions (exponential

versus binomial versus expert information) will be based on

1) how the point estimators compare to the flight test mean

value and 2) the width of the confidence or probability

intervals for each of the models.
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IV. Results

Overview

The results of the calculations described in the

methodology of Chapter III will be described and discussed

in this section. Most of the calculations will be shown in

detail the first time presented and referenced in Appendix F

for subsequent applications. The flight test data will be

examined first to establish a benchmark with which to judge

the prospective models. Point estimates and confidence

intervals will be calculated in the order presented in the

methodology, beginning with the classical models, continuing

through the Bayesian distributions, and completing with the

Bayesian expert information approach. This will be followed

by a comparison of each of the model's predictions with the

flight test values determined earlier. The flight test

classical exponential and binomial approaches will be

addressed next.

Flight Test

The flight test data (see Appendix A) was evaluated

using the methods of classical statistical inference. The

database (26) contained data from all 134 Tomahawk Land

Attack Missile flight tests, representing a number of

different configurations. In order to have enough data

points to estimate the failure distribution, a Goodness-of-

Fit test was conducted using failure data from the complete
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database. Reliability improvements were incorporated in

some FY83 production units and in most FY84 and later units.

Point estimates and confidence intervals were determined for

three samples from the database: a) all flight tests, b)

FY83 and on, and c) FY84 and on. Results of the Kolmogorov-

Smirnov test will be reviewed next to see if the flight test

failures were distributed exponentially.

Goodness-of-Fit Test. Using the sample point estimate

for derived from the all of the flight test failures, an

exponential distribution of random points was compared with

the actual flight times. The results of the test are shown

in Figure 6.

The p-value for this test indicates that the two

distributions are not statistically distinct. This implies

that the CMGS flight test failures are exponentially

distributed. Because only two flight test failures have

occurred with the FY83 and later configurations, all CMGS

flight failures have been included for the Kolmogorov-

Smirnov Test. Caution must be used in interpreting these

results because of the small sample size and varying

configurations of earlier flight test units. The point

estimates and confidence intervals were calculated using all

the flight test operating time, including those units that

flew successfully. As such, the flight tests were regarded

as a Type I, time truncated tests were directly comparable

to the CMGS Reliability Demonstration results.
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TWO SAMPLE KOLMOGOROV-SMIRNOV (SMIRNOV) TEST
1.0

0.0

--- TIME TIME2

SAMPLE SIZE FOR TIME 9
SAMPLE SIZE FOR TIME2 11

HYPOTHESIS : TIME <> TIME2
TWO TAILED KOLMOGOROV-SMIRNOV STATISTIC 0.12

HYPOTHESIS : TIME < TIME2
ONE TAILED KOLMOGOROV-SMIRNOV STATISTIC 0.00

HYPOTHESIS : TIME > TIME2
ONE TAILED KOLMOGOROV-SMIRNOV STATISTIC 0.12

Figure 6. Flight Test Data Kolmogorov-Smirnov Test
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The Classical Exponential Approach. The number of

failures and total operating time for the flight tests is

shown in Table 3. The point estimate for the failure rate

is the number of failures divided by the total operating

time in the test.

Classical Exponential Confidence Interval. The

90% confidence interval about the point estimate was

obtained for the FY83 data using a chi square transformation

with equation (11).

Lower 1.635
Limit = = .01087

2 * 75.2

Upper 9.488
Limit -------- = .06309

2 * 75.2

The Binomial Approach. This approach used the number

of successful missions completed divided by the number

attempted to develop a point estimate for p, the probability

of success. This value was then converted to a failure rate

using the exponential relationship described in equation

(1). The binomial point estimates and confidence intervals

for the flight test data are shown in Table 3.

Classical Binomial Confidence Interval. The 90 %

confidence interval about the point estimate was

approximated using a transformation to the F distribution as

described in equation (12). For the flight test data,
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Table 3. Flight Test Results

Exponential

Data Time Failures % Confidence Limit
(T) (R) (RPT) Lower Upper

All 176.441 12 .06801 .04358 .10321

FY83 75.2 2 .02660 .01087 .06309

FY84 54.65 1 .01830 .006502 .05481

Binomial

Data Number of Missions P Confidence Limit
Success Attempt (X/N) -" Lower Upper

MX (N)

All 107 119 .8992 .03543 .02301 .05253

FY83 48 50 .9600 .01361 .003657 .03610

FY84 41 42 .9762 .008033 .0007849 .03118

One failure assumed to occur on next mission, t = 0

Lower (48+1)*F (2*48+2, 2*50-2*48)
Limit ------------------------

50-48+(48+1)*F 9 5 (2*48+2, 2*50-2*48)

49*F (98, 4) 49*3.7
.95 - .9891

2+49*F 9 5 (98, 4) 2+49*3.7

and converting to a failure rate, R(t) = exp(-N*3),

= ln(.9891)/-3 = .003657

Upper 48
Limit = --- ---------------------

48+(50-48+1)*F (2*50-2*48+2, 2*48)95
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48 48
= ------------ --------- = .8974

48+3*F. 9 5 (6,96) 48+3*1.83

= in(R)/(-3) = ln(.8974)/-3 = .03610

The differences in the flight test 6 point estimates

and confidence intervals between the exponential and

binomial approaches raise concerns over the use of this

flight test data as a benchmark for model performance. If

the actual failure rate A was exponentially distributed,

then based on the model mission time, the binomial and

exponential values should have been equivalent.

The configuration of the CMGS units had an impact on

the demonstrated flight test reliability. The FY84

configuration was probably most representative of the

current CMGS configuration, however, because the point

estimates and confidence intervals for the failure rate were

derived by including a hypothetical failure, the true A for

this population was probably lower than indicated above.

Lacking sufficient data for the FY84 configuration, the FY83

configuration data was used as a prior for the Bayesian

approaches.

The Classical Models

As described in the methodology, both exponential and

binomial approaches were used with the CMGS Reliability

Demonstration data (28-30) from each of the phases of

testing. A prediction for the point estimate and a

54



corresponding confidence interval was made for a combination

of all of the data as well.

The Classical Exponential Approach. The number of

failures and total operating time in each test is shown in

Table 4 for each of the test phases. The point estimate for

the failure rate A was the number of failures divided by the

total operating time in the test.

Classical Exponential Confidence Interval. The

90% confidence interval about the point estimate was

obtained using a chi square transformation with equation

Lower 2.733
Limit = ------------ .001444

2 * 946.846

Upper 12.592
Limit = ----------- .006648

2 * 946.846

Table 4. Classical Exponential Model

Test Time Failures X Confidence Limit
(T) (R) (R/T) Lower Upper

Phase I 946.486 3 .003170 .001444 .006648

Phase II 423.11 1 .002364 .0008399 .007080

Phase I 881.413 3 .003404 .001550 .007142
Extension

Combined 2251 7 .003110 .001769 .005260
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The Binomial Approach. This approdch used the number

of successful missions completed divided by the number

attempted to develop a point estimate for p, the probability

of cucces3. This value was then converted to a failure rate

using the exponencial relationship described in equation

(1). The data and resulting v3.ues for the CMGS Reliability

Demonstration test phases are shown in Table 5.

Table 5. Classical Dinomial Model

Test Number of Missions X/N Ž Confidence Limit
Success Attempt Lower Upper

(X) (N)

Phase I 279 282 .9894 .003565 .001310 .007893

Phase II 125 126 .9921 .002656 .0002787 .01034

Phase I 261 264 .9886 .003810 .00140 .008424
Extension

Combined 665 672 .9896 .003490 .001941 .005922

Classical Binomial Confidence Interval. The 90 %

confidence interval about the point estimate was

approximated using a transformation to the F distribution as

described in equation (12).

Classical Binomial Confidence Interval. The

confidence interval was determined using equation (12) and

the F distribution for 1- /2 = .95. For the Phase I data,

Lower (279+1)*F. 9 5(2*279+2, 2*282-2*279,
Limit = ----------------------------

282-279+(279+i)*F 9 5 (2*27992, 2k282-2*279)
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280*F 9 5 (560, 6) 280*2.72
95 -------------------- .9961

3+280*F 9 5 (560, 6) 3+280*2.72

and converting to a failure rate, R(t) = exp(-N*3),

= ln(.9961)/-3 = .001310

Upper 279
Limit = ------------------------------------------

279+(282-279+1)*F 95(2*282-2*279+2, 2*279)

279 279
= = = .9765

(279+4*F 9 5 (8,558) 279+4*1.68

= ln(R)'/(-3) = ln(.9765)/-3 = .007934

There was good agieement between the classical

exponential and binomial point estimates for N. In both

cases, they were considerably lower than the flight test

failure rates, and had confidence intervals enclosing the

point estimates that were an order of magnitude smaller than

the flight test confidence intervals. The binomial

confidence intervals were wider than those for the

exponential approach.

The Bayesian Models

The next sections describe the results obtained [rom

the Bayesian exponential, binDmial and expert information

models, the last having both exponential and binomial

approaches. In the development of each model, a sequence of

steps was followed:
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1) Develop prior distribution,

2) Calculate posterior distribution or iterative
priors,

3) Determine Bayesian point estimate for failure rate,

4) Determine Total Bayesian Probability Interval.

The Bayesian exponential model was examined first.

Bayesian Exponential Model. This model used flight

data from comparable'CMGS configurations to develop the

gamma(e,O) prior distribution. The prior was then updated

by results from the CMGS Reliability Demonstration to

predict point estimates and TBPI's for each of the three

test phases and the combination of all three.

Bayesian Exponential Prior. For the purposes of

this research, flight test data from CMGS units built in

FY83 ana later production lots was used to develop the prior

distribution. As described in the methodology, the simplest

estimate for the a and 0 parameters of the gamma

distribution were the number of flight test failures, s,

and total test time, t. The gamma(2,75.2) prior

distribution, based on the flight test data, was used to

obtain the posterior distribution.

Bayesian Exponential Preposterior Analysis. The

prior was evaluated using two hypothetical samples of data.

The likely data was one failure in 256 hours and resulted in

the following point estimate:
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s + 1+ 2
1=2 - .009058

t + 256 + 75.2

The unlikely data was ten failures in the same 256 hours for

a point estimate of

s +9( 10+2
- - = .03623

t +A 256 + 75.2

These values indicated that the gamma(2,75.2) prior was

performing in a proper manner. If the point estimates for

these two data samples had been similar, the prior would

have been adjusted.

Bayesian Exponential Posteriors. The gamma(2,75.2)

prior was updated by the CMGS Reliability Demonstration

failures, s, and total time, t, in test for each of the

three phases and the combination of all three. The values

for s and t are tabulated in Table 6 along with the point

estimates and TBPI's for the new gamma(s+K,t+A) posterior

distributions.

Bayesian Exponential Point Estimate. Equation

(16) defines the Bayesian point estimator for the mean. The

calculation for Phase I data was

S+• A3+2
= - .004894

t + 946.486 + 75.2
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Bayesian Exponential Probability Interval. The

TBPI for each of the CMGS Reliability Demonstration test

phases was calculated using chi square percentile values.

Phase I calculations are shown below, based on equation

(17), and the remaining values are tabulated in Table 6.

Lower X2.(2"3 + 2*2)Limit = 52 *)39 - .001928
Lmt ----------------------------- 192

2*(946.486 + 75.2) 2043.37

Table 6. Bayesian Exponential Model

Test Time # of Failures s+4 Confidence Limit
(T) (R) t+O Lower Upper

Phase I 946.486 3 .004894 .001928 .008961

Phase II 423.11 1 .006020 .001641 .01263

Phase I 881.413 3 .005338 .002106 .009775
Extension

Combined 2251 7 .003869 .002018 .006205

Upper X2 *3 2*
.05(2 + 2) 18.31Limit -- - - - -- - - - - --- -- .008961

2*(946.486 + 75.2) 2043.37

Bayesian Binomial Model. For the binomial approach,

the )5(x,n) distribution was used for both the prior and

posterior distributions. X was the number of successful

missions accomplished and n was the number attempted. As in

the Bayesian exponential model, the prior was based on
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relevant flight test data and updated with the results of

the CMGS Reliability Demonstration.

Bayesian binomial Prior. The P(x0,n0)

distribution was used for the prior, where x0 was the number

of flight test successes and n0 was the total number of

flights attempted. As in the Bayesian exponential model,

only flights using CMGS units produced in FY83 and later

production lots were scored.

Bayesian Binomial Preposterior Analysis. The

preposterior analysis for this approach used binomial

hypothetical data. The likely data was 99 successes out of

100 attempts with a point estimate of:

x + x0  99 + 48
---------- = .9800

n + n0  100 + 50

convert to X, X = ln(.9800)/-3 .906734

The unlikely data was 90 successes out of 100 attempts with

a point estimate of:

* + x 0 90 + 48
=--90+8 = .9200

n + n0  100 4 50

convert to l, ?= in(.9200)/-3 = .02779

The results of this analysis again indicated that the

prior was functioning properly, as evidenced by the wide

difference between the two failure rates.
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Bayesian Binomial Posterior. The e(48,50) prior

was updated with the results of the CMGS Reliability

Demonstration to form four new posterior R(x+x0 ,n+n 0 )

distributions (including the combination of phase data).

The x and n parameters were the successes and total attempts

for each of the test phases.

Bayesian Binomial Point Estimate. The point

estimator for the reliability was calculated for Phase I

data using equation (19). The results of point estimate and

TBPI calculations for other phases are shown in Table 7.

x + x0  279 + 48
= --------- .9849

n + n0  282 + 50

convert to A, A = ln(.9849)/-3 = .005058

Table 7. Bayesian Binomial Model

Test Number of Missions x+x 0  Confidence Limit
Success Attempt - Lower Upper

n+n0
(X) (N)0

Phase I 279 282 .9849 .005058 .002465 .008082

Phase II 125 126 .9830 .005731 .002115 .01016

Phase I 261 264 .9841 .005351 .002608 .008615
Extension

Combined 665 672 .9875 .004181 .002525 .006038

Bayesian Binomial Probability Interval. The TBPI

for the A(x+x 0 fn+n0 ) posterior distribution given by
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equation (20) was calculated for Phase I data as shown

below. Other phases are included in Table 7.

Lower (279+48)*F.95(2*279+2*48,2*282+2*50-2*279-2*48)
Limit =------------------------------

282+50-279-48+ (279+48) *F. 95(2*279+2*48,

2*282+2*50-2*279-2*48)

327*F.95 (654, 10) 327*2.06
= ----------------- ----------- .9926

5+327*F.95(654,10) 5+327*2.06

to convert to A, ln(.9925)/-3 = .002465

Upper 279 + 48
Limit - ----------------------------

279+48+ (282+50-279-48) *F. 92 (2*282+2*50-2*279-

2*48, 2*279+2*48)

327 327
= ----------- .9761

327+5*F.95(I0,654) 327+5*1.605

to convert to X, ln(.9761)/-3 = .008082

Analysis. These Bayesian models had point

estimates for each of the individual test phases that were

consistently higher than the classical estimates. Those for

the combined values were much closer, indicating the

sensitivity of the posterior to the size of the sample.

Again, all of these point estimates were significantly lower

than the flight test results. In contrast to the classical

values, the confidence intervals for the Bayesian

exponential approach were wider for each of the four test
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cases than those of the Bayesian binomial approach, though

not by an appreciable amount.

Bayesian Expert Information Model. The expert

information model made use of the judgement of weapon system

experts to construct Subjective Probability Distributions

(SPD) that reflect the relative uncertainty of their

judgements. These SPD's were then modified by the Bayesian

process to incorporate new information and used a6

management tools for decision making. This research used a

modification of the Kaplan model explained in Chapters II &

III to obtain a point estimate and probability interval for

the failure rate of the CMGS based on the steps outlined in

the methodology.

Bayesian Expert Information Prior. The Final

Prior was the product of a series of iterative updates with

each successive posterior distribution being the next prior

distribution. The calculations for each update are provided

in Table 8, and a sample calculation is demonstrated for the

generation of the Second Prior from the First Prior.

Step 1. The specified MTBF for the CMGS was 256 hours

(29:1D), which corresponded to a failure rate of .003906.

Using a three hour standard mission, this failure rate had a

reliability of .9884. In addition to this specified value,

there were predicted values for the CMGS reliability based

on parts counts, etc.. The predicted reliability of the

RMUC (9:3-70) was .9905, with a failure rate of .003182, and
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it may be regarded as an upper boundary of the CMGS

reliability envelope. The predicted CMGS reliability was

.9868, slightly less than the above specified value, with an

associated failure rate of .004429. It was considered

unlikely that the failure rates of the CMGS would deviate

greatly from these values. In order to account for the

variance, the range of values for the First Prior was

expanded to .001 through .006. Given the range, it was

necessary to attach a measure of the uncertainty inherent in

value.

Expert information was required to evaluate the risk or

uncertainty. The SPD selected to represent the predicted

reliability and associated failure rates is plotted in

Figure 9; it shows higher confidence in the central values

of the range. This First Prior was based on the subjective

determination of available information by the informed

source.

Step 2. The specified MTBF requirement (35:6) for a

similar component, the ALCM INE, was 395 hours. The

demonstrated MTBF was 424 hours in the period from 30

November 1981 through 31 December 1986, involving

approximately 576 failures in 91,114 hours for 1,687 ALCM

INE units (see Appendix B). The 29 hour increase

represented a 7.3418% increase over the specified MTBF. It

should be noted that these units were built during FY83 and

FY84 production lots, the same production lots used for the
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Table 8. Bayesian Expert-
Information First through Third Priors

First Prior = SPD based on CMGS Specification MTBF = 256 hrs

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pl(Wi) 0.1 0.15- 0.25 0.25 0.15 0.1

Second Prior = First Prior undated with ALCM INE 6.842%
decrease.

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pl(Mi) 0.1 0.15 0.25 0.25 0.15 0.1
R=exp(-3 ) =

0.9970 0.9940 0.9910 0.9880 0.9851 0.9821
R+.0007925 =

0.9977 0.9948 0.9918 0.9888 0.9859 0.9829
X(adj.) 7.35E-4 0.001734 0.002734 0.003733 0.004732 0.00573
(.3/.7) 0.145 0.18 0.25 0.22 0.135 0.07
pl (A i)p(E IAi) =

0.0145 0.027 0.0625 0.055 0.02025 0.007
/Vp(Esii) =
p2(Xi)= 0.07785 0.1449 0.3355 0.2953 0.1087 0.03758

Third Prior = Second Prior updated with FCII reliability
decrease .005205

R=exp(-3 )-.005205
0.9917 0.9888 0.9858 0.9828 0.9799 0.9769

xi 0.002745 0.00375 0.004755 0.005761 0.006766 0.00777
(.25/.75) 0.01946 0.09463 0.1926 0.3255 0.2486 0.1191
Xi(adj) 0.001 0.002 0.003 0.004 0.005 0.006
p2(Xi) 0.07785 0.1449 0.3355 0.2953 0.1087 0.0375
p(ElXi) 0.01946 0.09463 0.1926 0.3255 0.2486 0.1191
p2 (Xi) *p (E IAi) =

0.001515 0.01371 0.06463 0.09612 0.02703 0.00447
/Z(p(EI i)
p3(Ai)= 0.007302 0.06611 0.3114 0.4632 0.1302 0.0215

flight database calculations on the CMGS units. The MTBF

increase corresponded to a 6.8414 % decrease in the failure

rate A. This, in turn, resulted'in an increase in the

reliability of the CMGS units, calculated over a standard
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three hour mission. There was a shift down in the failure

rate of approximately .0003 for each .001 division of A.

For example, the previous probability density for A =

.006 was .10. With the shift, A = .005731, leaving 70 % of

the original probability density with the .006 category, and

transferring 30% to the .005 category. This continued to

the .001 category, which kept its .10 and the additional 30%

from category .002 for a grand total of .1450. Using Bayes'

Theorem, it was straightforward to perform the indicated

mathematical operations and normalize the function so the

area under the SPD was equal to 1.0. The resulting SPD is

the Second Prior.

The Second Prior had greater probability density

concentrated in the central values of the A range. Thus,

the effect of the ALCM INE data was to both reinforce the

original central tendency and shift it toward lower values.

Step 3. The design weaknesses identified in the Ground

Launched Cruise Missile Flight Critical Item Investigation

(11:2.1-4.16) were used to update the Second Prior. Table 9

tabulates the weaknesses and their effect on the CMGS

reliability. These values reduced the reliability estimates

and increase the probability of observing higher failure

rates. The SPD for A was therefore adjusted by shifting it

toward higher failure rates by an amount corresponding to

the reduced reliability, .0052050. This factor was the

summation of risk values tied to critical failure modes
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Table 9. GLCM WSAP Flight Critical Item Design Weaknesses

Failure (FCI's) Component Failure Reliability
Modes Probability Impact

41,220 (2824) Missile
36,272 (2280) CMGS
33,363 (2157) RMUC - -
Not Tested 855 " > 1 x 10-6 8.55 x 10-4

" 31 Other > 5 x 10-5 1.55 x 10-3
" 28 CMGS > 1 x 10-4 2.8 x 10-3

Total 916 5.205 x 10-3

that were not tested adequately. "Inadequately tested" was

a term defined by the GLCM WSAP FCII based on the level of

testing performed on each component, th.& criticality of the

failure modes and probability of failure.

The decreased reliability of .005205 was subtracted

from the calculated reliability values for each A. and a new1

X was obtained for the resulting decreased reliability.

For example, the new X j for Xi = .001 was ln(.997004-

.005205)1/-3, which equaled .002745. Because this value was

about 75% across the interval between .002 and .003, the

curve was shifted to the right by the same 75 %. Thus, 25 %

of the probability density for .001 remained at .001. The

remaining 75% of .077852 + 25% of .144966, the probability

density for .002, made up the new probability density for

.002, or .094607.

These new probability values were used to update the

Second Prior for the design weaknesses -- the resulting
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posterior was the Third Prior. As in Step 2 above, the

central tendency was reinforced, but with a shift toward

higher values. Although the ALCM INE and FCII updates might

have reasonably been expected to cancel their respective

effects, there was a new combined probability density of

77.5% for .003 6tA & .004 versus the First Prior

probability density of 50% for the same values.

Step 4. The Environmental Stress Screening and

acceptance testing results (32-34) were not suitable for

inclusion in this analysis. Examination of the data

indicated that the CMGS component screening process was

allowing an unacceptable number of quality escapes and

infant mortality to pass on to the missile acceptance

testing. Additionally, the missile Acceptance Test

Procedure had ESS and functional checkouts intermingled to

an extent that it was not possible to extract meaningful

data for either. Finally, data was not available on the

number of attempts necessary to completely pass through all

the tests. Although there was first pass yield data

available, because of the problems with test structure and

screening levels referenced above, this data was not

suitable for the research (see Appendix C). This step was

bypassed.

Step 5a. (Exponential) -- Flight test data was used to

update the Third Prior and form the posterior that was the

Final Prior. For the exponential approach, equation (21)
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was used with n failures in time T. Considering flight test

data (26) for CMGS units produced in FY83 and later,

n = 2 and T = 75.2. Again using the standard three hour

mission, it was possible to calculate the probability,

p(EIAi), of two failures in 75.2 hours, given each of the

failure rates, Ai. In the Third Prior, for 1 = .001,

p(EIAl) = .002623, and the corresponding Final Prior value

was .00063. Other values are tabulated in Table 10.

The tinal Prior was ready to use for calculating

exponential posterior distributions for each of the phases

nf the CMGS Reliability Demonstration. Before proceeding,

the Final Prior needed to be determined for the binomial

approach.

Step 5b. (Binomial) -- The Final Prior was calculated

by updating the Third Prior with the results of flight

testing of the current configuration, 48 successful out of

Table 10. Bayesian Expert Information
Exponential Final Prior

Final Prior = Third prior updated by Flight Test times
for FY83 and on. 2 failures, 75.2 hours.

Xi 0.001 0.002 0.003 0.004 0.005 0.006
p3(Ai) 0.007302 0.06611 0.3114 0.4632 0.1302 0.02157
p(IlXi) 0.002623 0.009731 0.02031 0.03349 0.04854 0.06483
p3 (A i) *p(E Ii) =

1.90E-05 0.000643 0.006326 0.01551 0.006323 0.00139
/z(P (kI \i)
pF(Ai)= 0.00063 0.02129 0.2093 0.5133 0.2092 0.04628

70



50 attempts. Equation (21) was used in the binomial format

and the calculations were made in a similar fashion as in

the exponential approach once P(EIAi) had been determined.

For 1 = .001, P(EIli) = .000867 and the resulting posterior

probability was .002257. Other 7alues are tabulated in

Table 11.

Table 11. Bayesian Expert Information Binomial Final Prior

Final Prior = Third Prior updated by Flight Test
results using FY83 & on, 48/50

Ai 0.001 0.002 0.003 0.004 0.005 0.006
p3(Ai) 0.007302 0.06611 0.3114 0.4632 0.1302 0.0215
p(Elli) 0.001168 0.004451 0.009544 0.01617 0.02408 0.0330
p3(Ai)*p(EIAi)=

8.53E-06 0.00029 0.002973 0.00749 0.003137 0.00071- \.(p (E IAi)

pF(hi)= 0.000583 0.02013 0.2034 0.5125 0.2146 0.0487

Both the exponential and binomial approaches resulted

in similar Final Priors. The chief impact of the flight

test data was to further centralize the probabiiity density

and simultaneously shift it toward slightly higher values of

Bayesian Expert Information Posteriors. The Final

Priors were used with the results of the CMGS Reliability

Demonstration to calculate the Posteriors for each of the

three test phases and the combination of all three. The

calculations were based on equation (21) in the same manner
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as in Steps 4.a and 5.b above. Exponential results are

tabulated in Table 12; binomial results are in Table 13.

Bayesian Expert Information Probability Intervals.

The TBPI was calculated using an A value of .1,

corresponding to a 90 % confidence limit. The total area

under the SPD was equal to one. The 90 % TBPI was defined

by the two endpoints of the shortest interval that

encompassed 90% of the area under the distribution. To

calculate the interval, ten increments were spaced between

each A value and the area was set equal to .90. An

estimate of the interval length was made and moved along the

A x-axis incrementally. The shortest interval that still

encompassed an area of .90 was the TBPI. The point

estimates and TBPI endpoints are shown in Table 14.

Analysis. The expert information exponential and

binomial approaches were remarkably consistent. The point

estimates were in the range of values for the other models,

and were significantly lower than the flight test results.

The real difference in this approach was the noticeably

narrower confidence intervals. In every case, the width did

not exceed .003, less than any other interval calculated in

this research.

A summary of the results will be presented in Chapter

V. The potential applications of this research will be

discussed, along with suggestions for future investigations.
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Table 12. Bayesidn Expert Information

Exponential Posteriors

First Case - Exponential Phase I 946.486 hours, 3 failures

A3i 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.00063 0.02129 0.2093 0.5133 0.2092 0.0462
p(EJAi) 0.05485 0.1703 0.2230 0.2052 0.1555 0.1043pF (Ai) *p( (IJAi) /1(p (E I Ai) =

0.00018 0.01878 0.2A19 0.5456 0.1686 0.02501

Point Estimate = 0.003939

Second Case - Exponential Phase II, 423.11 hours, 1 failure

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.00063 0.02129 0.2093 0.5133 0.2092 0.04628
p(ElXi) 0.2771 0.3631 0.3567 0.3115 0.2551 0.2005pF (Xi) *p (E J~i) /E (p (E I Ai) =

0.000576 0.02533 0.2447 0.5241 0.1749 0.03041

Point Estimate = 0.003939

Third Case - Exponential Phase I Extension, 881.4128 hourz3,
3 failures

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.00063 0.02129 0.2093 0.5133 0.2092 0.04628
p(E£Ii) 0.04727 0.1566 0.2189 0.2149 0.1739 0.1244pF (Ai) *p (E I Xi) /Z (p (F J Xi) =

0.000149 0.01653 0.2272 0.5471 0.1804 0.02856

"Point Estimate = 0.003977

Fourth Case - Exponential Combined 2251 hours, 7 failures

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.00063 0.02129 C.2093 0.5133 0.2092 0.04626
p(ElAi) 0.006118 0.08245 J.1483 0.1170 0.05874 0.02216pF (Xi) *p (E I hi) /F(p (LIJXi) =

3.65E-05 0.01653 0.2924 0.5656 0.1158 0.00966

Point Estimate = 0.00381
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Table 13. Bayesian Expert Information Binomial Posteriors

First Case - Binomial Phase I 279/282

Ai 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.000583 0.02013 0.2034 0.5125 0.2146 0.04377
P(EIAi) 0.002797 0.01692 0.04317 0.07735 0.1141 0.1490pF(Xi)*p(ajAi)/Z(p(EjAi) =

2.03E-05 0.00423 0.1091 0.4922 0.3042 0.09023

Point Estimate = 0.004367

Second Case - Binomial Phase II 125/126

Xi 0.001 0.002 0.003 0.004 0.005 0.006
pF(Ai) 0.000583 0.02013 0.2034 0.5125 0.2146 0.04877
p(EIAi) 0.1111 0.1962 0.259G 0.3053 0.3366 0.3563
pF(Xi)*p(EIli)/Y.(p(EIKi) =

0.000214 0.01304 0.1743 0.5166 0.2385 0.0573

Point Estimate = 0.004152

Third Case - Binomial Phase I extension 261/264

Ai 0.001 0.002 0.003 0.004 0.005 0.006
pF(hi) 0.000583 0.02013 0.2034 0.5125 0.2146 0.04877
p(EIi) 0.002335 0.01438 0.03736 0.06816 0.1024 0.1361
pF(Ai)*p(EIXi)/S(p(ElXi) =

1.91E-05 0.004053 0.1064 0.4889 0.3077 0.09293

Point Estimate = 0.004379

Fourth Case - Binomial Combined 665/672

Ni 0.001 0.002 0.003 0.004 0.005 0.006
pF(?\i) 0.000583 0.02013 0.2034 0.5125 0.2146 0.04877
p(Ej)i) 6.12E-06 0.000402 0.003529 0.01356 0.03316 0.0608
pF(Xi)*p(EIi)/j(p(EIli) =

2.01E-07 0.000456 0.04041 0.3913 0.4007 0.1672

Point Estimate 0.004694
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Taole 14. Bayesian Expert Information Probability Intervals

Test Phase Point Probability Interval
Estimate Lower Upper Confidence

Exponential Approach:
Phase I .003946 .0025 .0051 .9055
Phase II .003947 .0025 .0052 .9087
Phase I Extension .00398A .0025 .0051 .9006
Combined Phases .003815 .0025 .0048 .9043

Binomial Approach:
Phase I .004372 .0025 .0054 .9055
Phase II .004157 .0026 .0054 .9116
Phase I Extension .004384 .0025 .0054 .9030
Combined Phases .004698 .0035 .0061 .9090
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V. Recommendations

Data Analysis

A summary of the point estimates for X and the width of

90% confidence intervals is displayed in Table 15 for each

of the models and CMGS test phases. The military manager

who is facing a weapon systems decision will often request

reliability analyses be performed to determine the most

likely reliability point estimate. It is often difficult to

make the decision without knowing something about the

uncertainty or risk associated with accepting that point

estimate. The savvy military manager will also request an

analysis be performed to determine the confidence interval

surrounding the point estimate. As was explained earlier in

Chapter 2, the classical confidence interval is stating that

for a certain percentage of trials, the true population

value will fall within a range about the point estimate.

The Total Bayesian Probability Interval is stating the

probability that the true value is within a range about the

point estimate for each trial. The conmon interpretation of

each of these is that they represent the risk assumed by the

manager in accepting the point estimate as the true value.

If the intervals are very narrow, the manager believes that

even if Lhe point estimate is not correct, it is very close

to the actual value. Similarly, if the interval is wide,

the true value could take on a range of values, some of
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Table 15. Point Estimates and Confidence Interval Widths

Phase I Classic Expon .003170 .005204

Phase I Classic Binomial .003565 .006583

Phase I Bayes Expon .004894 .007033

Phase I Bayes Binomial .005058 .005617

Phase I Expert Expon .003939 .0026

Phase I Expert Binomial .004367 .0029

Phase II Classic Expon .002364 .0062401

Phase II Classic Binomial .002656 .0100613

Phase II Bayes Expon .006020 .01099

Phase II Bayes Binomial .005731 .008045

Phase II Expert Expon .003939 .0027

Phase II Expert Binomial .004152 .0028

Phase I Ex Classic Expon .003404 .005592

Phase I Ex Classic Binomial .003810 .007024

Phase I Ex Bayes Expon .005338 .007669

Phase I Ex Bayes Binomial .005351 .006007

Phase I Ex Expert Expon .003977 .0026

Phase I Ex Expert Binomial .004379 .0029

Combined Classic Expon .003110 .003491

Combined Classic Binomial .003490 .003981

Combined Bayes Expon .003869 .004187

Combined Bayes Binomial .004181 .003513

Combined Expert Expon .003810 .0023

Combined Expert Binomial .004694 .002G
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which might be quite different from the point estimate.

Therefore, for the purposes of managerial decision-making,

the shorter the confidence interval surrounding the point

estimate, the lower the risk in accepting the point

estimate. The discussion of these results and a comparison

with the flight test point values follows.

Models. Within each of the different model approaches,

relatively consistent point estimates for A were obtained

for each of the test phases and combined phases data. For

example, Table 15 shows the classical exponential point

estimates for Phase I, II, I-extension, and combined phases

data are .003170, .002364, .003404, and .003110

There is a similar trend among the confidence interval

widths through the three test phases, .005204, .006240, and

.005592 for the classical exporcýntial model, with relatively

consistent widths for each model approach. The confidence

interval widths for the combined phases data, .003491 for

the classical exponential model, arz shorter for all the

approaches, predictably the result given the greater amount

of data used in those calculations.

The point estimates for the classical approaches were

always the smallest values, followed by the expert

information and then Bayesian approaches. This reflects the

relative effect of flight test data in the prior

distributions. For example, the classical approach only

considers the CMGS Reliability Demonstration data; the
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flight test data has no effect. Hence, this approach would

show the greatest variance from the flight test point

estimates.

The expert information approach confidence interval

widths were the smallest in every case. The classical

approach intervals were slightly smaller than those of the

Bayesian approach, but still large compared to the expert

information values.

Flight Test Results. The CMGS flight test failures

were concluded to be distributed exponentially when examined

over the total flight test program. It was not possible to

conduct a meaningful Goodness-of-Fit test for the flight

test failures of CMGS units with comparable configurations

to those used in the CMGS Reliability Demonstration because

of the limited number of failures. A Weibull plot of the

total failures shown in Figure 9 indicates that the shape

parameter A was approximately 2.0, significantly above the

0.0 to 1.0 range associated with a strictly exponential

failure rate. This is also supported by the differences

between exponential and binomial approaches for each of the

models. It appears that there may be other failure

mechanisms at work based on the limited data available.

Because the CMGS configuration changes that were

intended to improve reliability were introduced over a

period of time, it would be reasorable to expect a range of

reliability characteristics corresponding to the different

81



-, WEIBULL PROBABILITY .CHART

Ict '6 C Vý GS F LA -'T- -t ts - S I
Type of

UU

mignr 9.Fih0etFiueWiulPo

82m~itc t



configurations. However, because the changes were all

originally classified as producibility improvements that

should not appreciably change the form, fit, or function of

the CMGS units, it is difficult to isolate specific

reliability improvements to each change. In addition, the

contractor had no obligation to include the changes in every

unit that was produced.

Based on the differences in failure rates calculated

using the different samples of the flight test database, it

seems likely that the configuration changes did indeed

affect the reliability of the CMGS. For example, the

failure rate for the FY84 units is .01830 vice .0680 for the

total flight test program using the exponential approach,

and .008033 vice .03543 using the binomial approach.

Although every effort was made in designing the CMGS

Reliability Demonstration to simulate the operational

environments experienced by the CMGS, the differences

between the Bayesian and classical approaches indicate some

portions of the test environment were more benign than found

in the real world. Because the point estimates from the

Bayesian approaches are closer to the flight test results

than the classical statistical inference approaches, the

Bayesian approaches are better tools for evaluating the

results of the CMGS Reliability Demonstration.
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Other Applications

The final step in this research is the recommrendation

of further research in the area of Bayesian reliability.

Three proposed applications are described in the next

sections.

Advanced Cruise Missile. A clear application of this

technology is the generalization of the findings to the next

generation cruise missiles. The Advanced Cruise Missile

(ACM) Navigation and Guidance System has the same

approximate degree of complexity as the CMGS and performs an

equivalent function. The Bayesian expert information model

S • should be developed for the ACM and used to build prior

distributions upon which to base reliability predictions.

Because the ACM is projected to have a higher designed

reliability, the disadvantages in conducting testing in

support of classical statistical inference analyses would be

expected to be greater as well.

Avionics Integrity Program (AVIP). One of the chief

thrusts of the ASD AVIP program is to change the Air Force's

perception of reliability from a reliance on MTBF to an

emphasis on the "Failure Free Operational Period". Of

course, with a constant failure rate model, such as the

exponential distribution, there is always a finite

probability of failures. If the hardware can be designed in

so as to locate the requ. •-ed operating period within an
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interval of relatively low probability of failure, such as

in the tail portion of a failure distribution, the desired

result can be obtained.

The use of Bayesian methodology, particularly the

expert information approach, can specify shorter confidence

intervals for a given amount of test data, resulting in a

lower probability of failure for the tails of the

distribution. By specifying the required operating period

outside of the confidence interval, the very low

probabilities of failure can be achieved (see Figure 10).

I<--- FFOP ---- >1

MTBF

Figure 10. AVIP Failure Free Operational Period (FFOP)

Foreign Technology Evaluation. The Bayesian

approaches, in particular the expert information approaches,

seem to be good candidates for evaluating the reliability of

foreign technology. In many of these scenarios, the analyst

has some knowledge of the current threat or capability and

considerably more information regarding earlier types or
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versions. The Bayesian approach allows the analyst to

assess the validity of new information and weight the

reliability assessment accordingly. As more information is

received, the prior distributions can be easily updated,

further refining the analysis.

Summary

The Bayesian models defined in this research are

capable of specifying shorter confidence intervals about

point estimates for cruise missile electronic component

failure rates than the traditional classical statistical'

inference models. The expert information model is

particularly useful in that it can easily utilize a wide

variety of data sources, enabling more accurate point

estimation and confidence interval calculation. Its point

estimates were more representative of the flight test

results, and thus presumably the true failure rate, than

were the classical models. The confidence intervals were

clearly shorter than for any of the classical or Bayesian

models, making them particularly useful for managerial

decision-making. Because there is uncertainty in verifying

the constancy of the CMGS flight test failure rate, the

expert information binomial model is recommended for future

work with the CMGS units.
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Appendix A: TLAM Fligh Test Data (26)

Date Missile Flight Time MSL Success CMCS Success CM,1' FY

790717 AL2:1 2.33 5 F 79
790001 ALI:1 2.44 S S 79
790900 AL3:l 0.02 F N 19
790929 AL4:1 4.04 S 5 /9
791027 AL2:2 3.94 z " 79
791115 AL6:1 0.02 F N 79
791206 ALI:2 0.85 F j 79
791227 AL4:2 0.74 F S 79
800124 AL7:1 3.90 5 S 19
800208 AL5:1 4.10 S 5 79
800516 T16:1 1.76 S S 79
800816 T15:1 0.01 F N 79
801126 T16:2 1.97 S F 79
810215 T17:3 1.49. S S 79
810328 T50:1 1.44 S S 79
810710 T51 0.99 S S 79
810730 T50:2 0.98 F F 79
810919 T17:4 1.35 S 5 79
811027 T52 0.99 S S 79
811107 T54 0.01 F N 79
811214 T53 0.99 F S 79
820225 T72:1 1.90 S F 79
820325 T73:1 1.89 5 F 79
820330 T56 0.01 F N 79
020519 T74:1 1.96 5 ,
820521 T55 0.90 F S 79
820806 T17:5 1.938, S 79
820327 T57 1.04 N S 79
820827 T72:2 1.13 F F 719
321112 T75:1 1.77 S S 79
821203 T104 1.07 S S /9
821217 T74:2 0.01 F N 7i
830223 T72:3 1.92 ' j 79
830306 T58 0.33 F F 79
830414 T106 1.06 S j 81
830416 T78:1 1.92 5 S 81
830510 T79 1.30 3 0 79
830603 T102:1 2.13 S S 79
830607 T75:2 1.98 5i 5 8 1
830727 T97:1 1.81 -C 82
031003 T78:2 1.33 S 5 82
831015 T81:1 2.05 S S ,2
831027 T84:1 1.15 S S 119
831114 T102:2 2.10 S 5 32
831119 T98:1 0.30 F S Z12
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840123 T103:1 0.42 F S 82
840213 T207:1 1.10 S S 82
840224 T208:1 0.66 N S 82
840301 T72:4 1.70 F S 82
840403 T293:1 1.93 S S 82
840404 T16:3 1.42 S S 82
840405 T294:1 2.07 S S 82
840413 T208:2 1.75 S S 82
840619 T175 1,42 S 5 82
840725 T143 1.00 s S 82
840821 TI51 0.01 F N 82
840918 T303:1 0.01 F N 82
841110 T185 1.07 S S 82
841214 T363:1 2.10 S s [3
850111 T137 1.27 5 S 82
850212 T269:1 1.97 S J 84
850223 T181 0.88 S S 82
850309 T176 0.97 S 5 82
850313 T99:1 2.01 S S 83
850315 T371:1 2.01 S S 84
850323 T84:2 0.00 N N 84
850329 T153 0.56 S S 82
850418 T207:2 1.95 S S 83
850511 T262:1 0.00 N N [4
850604 T205:I 2.18 S s 84
850604 T2001 2.18 S s 82
850730 T208:3 1.57 S S 84
851005 T1OI:1 1,13 S S 85
851022 T196:1 1.43 N F 92
851108 T183:1 0.90 s s 82
851122 T262:1 1.06 S s 84
851126 T366:1 1.96 5 F 83
851208 T265:1 0.20 F N 82
851212 T354:1 0,52 N s 84
851212 T276:1 0.60 F F 81
860109 T180OI 1.31 S S 8/1
860215 T258:1 2,00 S S 84
860401 T179:1 0,97 S S 82
860614 T186JI 0.90 S S 82
860626 T338:1 2.15 S s 83
860626 T368:1 2.15 S S 83
860630 T334:1 0.00 F N 84
860630 T207:,3 1.33 S S 84
860801 T188:1 1.50 S s 82
860802 T311:1 1.15 F F 83
860916 T373:1 0.00 F N 83
861121 T182:1 1.75 S S 82
870119 T430:1 1.40 S 5 84
870119 T272:1 1.50 S 5 85
870120 T442:1 1.50 S S 84
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870126 T233 0.65 F F 82
870401 T314:1 1.23 F 5 03

870427 T594:1 2.03 S S 85
870429 T627:1 2.03 S S 04

870430 T78:3 1.28 S S 86

870710 T830 0.70 S 5 85

870717 T812:1 1.36 S S 85

870718 T479:1 1.58 S 5 04

870719 T696:1 1.50 3 5 83

870728 T926:1 1.97 S 5 85

870728 T857:1 1.97 S 3 85

870730 T921:1 1.97 S 5 05

870825 T187 1.27 S S 82

870826 T831 0.80 S S 85

870924 T101:2 1.22 S 5 82

871009 T186:2 0.00 N N 82
871103 T186:2 1.15 S S 82

871114 T673:1 0.00 S S 85

871211 T178 1.70 S S 84

871213 T434:1 0.00 S S 84

880120 T264:1 2.06 S 1 83

880327 T669:1 1.55 S 5 85

880328 T687:1 1.54 S S 85

880409 T149:.[ 1.08 5S5 87

880424 T1173:1 1.55 S : 87

880503 T1203:1 0.81 5 86

880504 T1202:1 1.00 S S 86

880521 T716 0.00
880524 T1178:1 1.13 S 5 86

052788 T1179:1 1.28 86
080688 T1572:1 0.08 0 8
080988 T429:1 0.37 F S a4

081088 T254:1 1.79 S S 83
082388 T980:1 1.72 S S %6

090388 T1012 1.43 S S 86

102188 T426 0.50 S S 134

102788 T681:1 1.50 S S 86

110888 T669:2 1.94 S S 05

011089 T174 0.50 S S 83
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Appendix C: Tomahawk Hurn-In Test Report Excerpts
(32:2-8 -2-9)
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Appendix D: Tomahawk Burn-In Test Report Excerpts (33: 2-10)

TLAMGS YIELDS
LEVEL 1 VS. LEVEL 2

I0o-
g9o-.

GOAL

70-,

S50-

40-

lO-

20

10-

OCT- DEC 87 JAN- MAR 88 APRIL - JUN 88 JUL - SEP' 88

TAS 45 34 11 25 L23 21 39 23

FAIL a 6 3 1 0 2 7 2

YELD% 100% 82% 73% 6% 100% 90% 82% 91%

LEVEL

GS LEVEL (LEVEL 2) FIGURE 24

= m MISSILE LEVEL (LEVEL 1)

Figure 2-6 above shows TLAM Guidance Set yields for Level 1 and Level 2

testing on a quarterly basis and for this reporting period (July - September 1988)
for comparison. This information can be used to discern two things: first,
whether yield at Level 2 testing is improving and second. whether Levell
(missile level) yield is less or greater than Level 2 and if that gap is changing.

Ground rules for data in this figure are as follows:

- Only first attempt at passing Level 2 ATP and first Level 1 Guidance Set
failures considered.

- Only units completing testing during each period considered.
- Only proven or pending hardware failures in.luded.

Level 2 yield is down for the 3rd quarter. The major discrepancy is against
RMUCs with four failures. These items have been tested on Litton's TATE

and are being dispositioned for return to the vendor. Level I yield remains
essentially the same this quarter.
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Appendix E: Tomahawk Burn-In Test Report Excerpts (34: 2-10)

TLAMGS YIELDS
LEVEL 1 VS. LEVEL 2

00
i.. A.., •

17

40. L
30-

10"

JAN -MARe97 APR.-JUN 47 JUL.-SEPT 97 OCT-NOV97
T7.AMS

(X:MPElIE) 27 33 4e 40 24 24 33 24

FAIL 5 2 1 e 3 1 0 $

Y1ELD% a2% W8% 94% 06% 0am 946 100% 111%

LEVEL: as MI as M as 161191 GBs Ml

FIGURE 24

Figure 2-6 above shows TLAM Guidance Set yields for Level 1 and Level 2
t.sting on a quarterly basis and for this reporting period (October - November)
t.; comparison. This information can be used to discern two things: first,
whether yield at Level 2 testing is improving and second, whether Levell (missile
level) yield is less or greater than Level 2 and if that gap is changing.

Ground rules for data in this figure are as follows:

- Only first attempt at passing Level 2 ATP and first Level I Guidance Set
failures considered.

- Only units completing testing during each period considered.
- Only proven or pending hardware failures included.

The figure shows Level I yield decreasing while Level 2 yield is improving to
100%. This disparity between guidance set level testing and missile level
guidance removals Is not desirable and indicates that Level 2 test escapes
(latent defects) are likely being passed along to missile level. Accordingly,
the positive trend at Level 2 must be tampered with this concern. Further
Level I discussion is found back in section 1 under figure 1-5, while Level 2
detail is on the following pages.
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Appendix F: Calculations

Flight Test Classical Exponential

All Data

Lower 15.38
Limit = --------- = .04358

"2 * 176.44

Upper 36.42
Limit = = .10321

2 * 176.44

FY84

Lower .7107
Limit = -= .006502

2 * 54.65

Upper 5.991
Limit = ----- = .05481

2 * 54.65
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Flight Test Classical Binomial

All Data

Lower (107+1)*F (2*107+2, 2*119-2*107)
Limit ----------- - - -------------------------

119-107+(107+1)*F (2*107+2, 2*119-2*107). 95

108*F 9 5 (216,24) 108*1.555
95=---------- ------------ .9333

12+108*F 9 5 (216,24) 12+108*1.555

and converting to a failure rate, P(t) = exp(-A*3),

= ln(.9333)/-3 = .02301

Upper 107
Limit =-

107+(119-107+1)*F (2*119-2*107+2, 2xI07). 95

107 107
= -. 8542

107+13*F. 9 5 (26,214) 107+13*1.405

= ln(R)/(-3) = ln(.8542)/-3 = .05253

FY84

Lower (41+1)*F 9 5 (2*41+2, 2*42-2*41)
Limit .-----------------------

42-41+ (41+1)*F (2*41+2, 2*42-2*41).95

42*F (84,2) 42*10.1. 95------------------------ 97
1+42*F 9 5 (84,2) 1+42*10.1

= ln(.9976)/-3 = .0007849

Upper 41
Limit --------- ---------------

41+(42-41+1)*F (2*42-2*41+2, 2*41).95

41 41
=- == .9107

41+2*F 9 5 (4,82) 41+2*2.01

= ln(R)/(-3) = i.n(.9107)/-3 = .03118
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Classical Exponential

Phase II

Lower .1026
Limit = --------- = .0001212

2 * 423.11

Upper 9.488
Limit =---------- = .01121

2 * 881.413

Phase I Extension

Lower 2.733
Limit =-------------------- = .001550

2 * 881.413

Upper 12.5 92
Limit----------------------. 007142

2 * 881.413

Combined Phases

Lower 7.962
Limit =------------------- = .001769

2 * 2251

Upper 23.68
Limit = -------- = .005260

2 * 2-251
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Classical Binomial

Pnase II

Lower (125+1)*F (2*125+2, 2*126-2*125)
Limit -- 5-----------------------------------

126-125+(125+1)*F 9 5 (2*125+2, 2*126-2*125)

126*F 9 5 (252, 2) 126*10.2
95 = .9992

1+126*F 95 (252, 2) 1+126*10.2

and converting to a failure rate, R(t) = exp(-A*3),.

= ln(.9992)/-3 = .0002593

Upper 125
Limit =-------------------------------------------

125+(126-125+1)*F (2*126-2*125+2, 2*125). 95

125 125
S=- .9696

(125+2*F (4,250) 125+2*1.96.95 '

S-in(R)/(-3) = ln(.9696)/-3 = .01029

Phase I Extension

Lower (261+1)*F (2*261+2, 2*264-2*261)
Limit = -- 95-------------------------

264-261+(261+1)*F 9 5 (2*261+2, 2*264-2*261)

264*F. 9 5 (524, 6) 264*2.72
= = = .9958

1+126*F 9 5 (524, 6) 1+264*2.72

= ln(.9958)/-3 = .00140

Upper 261
Limit =-------------------------------------------

261+(264-261+1)*F (2*264-2*261+2, 2*261)
.95
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261 261
= -- - - - -- - - - - - - - - - - .9749

261+4*F 95 (8,522) 261+4*1.68

= ln(R)/(-3) = ln(.9749)/-3 = .008474

Combined Phases

Lower (665+1)*F 95 (2*665+2, 2*672-2*665)
Limit--------------------------------------

672-665+(665+1)*F 95 (2*665+2, 2*672-2*665)
_~~~~~~~~ 95*9 (3,4 6*.8 94

7666*F 95 (1332,14) 7666*1.80

=ln(.9942)/-3 .001941

Upper 665
Limit----------------------------------------------

665+(672-665+1)*F 95 (2*672-2*665+2, 2*665)

665 665
= -- - - - - - - - - - - - - - - - . 9822

(665+8*F95 (14,1330) 665+8*1.51

= ln(R)/(-3) = ln(.9822)/-3 = .006001
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Bayesian Exponential

Phase II

-= = .006020
t +js 423.11 + 75.2
Lower X
Limt 2 95(2"1 + 2*2) 1.635
Limit = ." 5 - -- - - - = -- - - -= .001641

2*(423.11 + 75.2) 996.62

_ ~Upper X
Limit 0 (2"1 + 2*2) 12.59
Limit = ."5 - -- - - - = --- - = .01263

2*(423.11 + 75.2) 996.62

Phase I Extension

s+0( 3+2
= =- .005338

t + 0 861.413 + 75.2
Lower X
Limt 2 95(2*3 + 2*2) 3.945
Limit = -- - - - - - - - --- -- -- .002106

2*(861.413 + 75.2) 1873.23

Upper X 2.05(2*3 + 2*2) 18.31
Limit = -------------- ------ .009775

2*(861.413 + 75.2) 1873.23

Combined Phases

s+• 7+2
- .003869

t + ( 2251 + 75.2

Lower X2 (2*7 + 2*2) 9.39
Limit = .--95(27+-2*2)-9.9 = = .002018

2*(2251 + 75.2) 4652.4

Upper X
Limit 2 .(2*7 + 2*2) 28.87
Limit = -- - - - - - - - - - = -- -- - .006205

2*(2251 + 75.2) 4652.4
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Bayesian Binomial

Phase II

125 + 48
----- .9830 , convert to

126 + 50
A = ln(.9830)/-3 = .005731

Lower (125+48)*F.95(2*125+2*48,2*126+2*50-2*125-2*48)
Limit -

126+50-125-48+ (125+48) *F. 95(2*125+2*48,

2*126+2*50-2*125-2*48)

173*F.95(346,6) 173*2.725
-- -- = .9937
3+173*F.95 (346,6) 3+173*2.72

to convert to A, ln(.9937)/-3 = .002115

Upper 125 + 48
Limit -

125+48+ (1-26+50-125-48) *F. 95 (2*126+2*50-2*125-

2*48, 2*125+2*48)

173 173
----------------- ----------- = .9700

173+3*F.95(6,346) 173+3*1.785

to convert to A, ln(.9700)/-3 = .01016

Phase I Extension

261 + 48
= .9841 , convert to A,

264 + 50
"A = ln(.9841)/-3 = .005351
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Lower (261+48)*F.95(2*261+2*48,2*264+2*50-2*261-2*48)
Limit =

264+50-261-48+ (261+48) *F. 95(2*261+2*48,

2*264+2*50-2*261-2"48)

309*F.95(618,10) 309*2.06
--------------- ----------- = .9922

5+309*F.95(618,10) 5+309*2.06

to convert to A, ln(.9922)/-3 = .002608

Upper 261 + 48
Limit =---------------------------------------------

261+48+(264+50-261-48)*F.95(2*264+2*50-2*261-

2*48, 2*261+2*48)

309 309
------------------------- .9745

309+5*F.95(10,618) 309+5*1.618

to convert to A, ln(.9745)/-3 = .008615

Combined Phases

665 + 48
-= .9875 , convert to A,

672 + 50
A = lni.98.4)/-3 = .004181

Lower (665+48)*F.95(2*665+2*48,2*672+2*50-2*665-2*48)
Limit ------------------------------

672+50-665-48+(665+48) *F.95(2*665+2*48,

2*672+2*50-2*665-2*48)

713*F.95(1426,18) 713*1.66
------------ --------- = .9925

9+713*F.95(1426,18) 9+713*1.66
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to convert to A, ln(.9925)/-3 = .002525

Upper 665 + 48
Limit -

665+48+ (672+50-665-48) *F. 95 (2*672+2*50-2*665-

2*48, 2*665+2*48)

713 713
--------------------- ----------- = .9821

713+9*F.95(18,1426) 713+9*1.448

to convert to A, ln(.9821)/-3 = .006038

103



Bayesian Expert Infornation Expoaential TBPI Calculations

Phase I
E(P(SlYi) 0.00018 0.018711 0.241852 0.545590 0.169585 0.025009

Phase II
Z(p(MjOi) 0.000576 0.025328 0.244706 0.52407 0.17491 0.030411

Phase I Extension
E(p(IjTI) 0.000149 0.016531 0.227239 0.547102 0.180416 0.028564

Coubined Phases
Z(p(0aIV) 3.65E-05 0.016529 0.292403 0.56561 0.115761 0.009661

TI Ph 1 x-26 Ph 1-ext x-26 Ph 2 x=27 Combined x-23
0.0005 0.00018 0.180253 0.000149 0.175747 0.000576 0.221668 3.651-05 0.133526
0.0006 0.00018 0.21242 0.000149 0.198456 0.000576 0.246001 3.651-05 0.162763
0.0007 0.00018 0.236587 0.000149 0.221165 0.000576 0.270494 3.653-05 0.192
0.0008 0.00018 0.260755 0.000149 0.243874 0.000576 0.322844 3.659-05 0.221236
0.0009 0.00018 0.315296 0.000149 C.29857 0.000576 0.375193 3.653-05 0.250473

0.001 0.00018 0.369838 0.000149 0.353265 0.000576 0.427542 3.651-05 0.27971
0.0011 0.00018 0.42438 0.000149 0.40796 0.000576 0.479092 3.65E-05 0.308946
0.0012 0.00018 0.478922 0.000149 0.462655 0.000576 0.532241 3.651-05 0.365504
0.0013 0.00018 0.533463 0.000149 0.51735! 0.000576 0.584591 3.651-05 0.422061
0.0014 0.00018 0.588005 0.000149 0.572046 0.000576 0.63694 3.653-05 0.478619
0.U015 0.018777 0.642547 0.016531 0.626741 0.025328 0.68929 0.016529 0.535176
0.0016 0.018771 0.695229 0.016531 0.679798 0.02S328 0.739164 0.016579 0.590084
0.0017 0.018777 0.747911 0.016531 0.732855 0.025328 0.789038 0.016529 0.644992
0.0018 0.018777 0.800593 0.016531 0.785913 0.025328 0.803996 0.016529 0.6999
0.0019 0.018777 0.815514 0.016531 0.802301 0.025328 0.818954 0.016529 0.754809
0.002 0.018777 0.830555 0.016531 0.81869 0.025328 0.833912 0.016529 0.809717

0.0021 0.018777 0.845535 0.016531 0.835078 0.025328 0.848871 0.016529 0.864625
0.0022 0.018777 0.860516 0.016531 0.851467 0.025328 0.363829 0.016529 0.874548
0.0023 0.018777 0.875491 0.016531 0.867855 0.02S328 0.870187 0.016529 0.884471
0.0024 0.018777 0.890478 0.016531 0.884244 0.025328 0.893745 0.016529 0.694394
0.0025 0.241852 0.905459 0.227239 0.900632 0.244706 0.908703 0.292403 0.904318
0.0076 0.241852 0.898132 0.227239 0.89525 0.244706 0.901724 0.292403 0.886653
0.0027 0.241852 0.890805 0.227239 0.891267 0.244706 0.894744 0.292403 0.868989
0.0028 0.241852 0.883479 0.227239 0.886585 0.244706 0.873315 0.292403 0.851325
0.0029 0.241852 0.861794 0.227239 0.866/18 0.244706 0.851885 0.292403 0.833661
0.003 0.241852 0.84011 0.227239 0.84685 0.244706 0.830456 0.292403 0.315996

0.0031 0.241852 0.818426 0.227239 0.826982 0.244706 0.809026 0.292403 0.798332
0.0032 0.241852 0.796742 0.227239 0.807115 0.244706 0.787597 0.292403 0.770058
0.0033 0.241852 0.115057 0.227239 0.787247 0.244706 0.166167 0.292403 0.741784
0.0034 0.241852 0.753373 0.227239 0.76738 0.244706 0.744738 0.292403 0.713509
0.0035 0.545598 0.731689 0.547102 0.747512 0.52407 0.723309 0.56561 0.685235
0.0036 0.545598 0.67963 0.547102 0.695658 0.52407 0.673943 0.56561 0.62964
0.0037 0.545598 0.b21571 0.547102 0.643805 0.52407 0.624577 0.56561 0.574045
0.0038 0.545598 0.575512 0.547102 0.591951 0.52407 0.57217 0.56561 0.51845
0.0039 0.545598 0.520952 0.547102 0.537241 0.S2407 0.519763 0.56561 0.462855

0.004 0.545598 0.466393 0.547102 0.48253 0.52407 0.467356 0.56561 0.40726
0.0041 0.545598 0.411833 0.547102 0.42782 0.52407 0.414949 0.56561 0.351666
0.0042 0.545598 0.357273 0.547102 0.37311 0.52407 0.362542 0.56561 0.295105
0.0043 0.545598 0.302713 0.547102 0.3184 0.52407 0.310135 0.56561 0.238543
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0.0044 0.545598 0.248154 0.547102 0.26369 0.52407 0.257728 0.56561 0.181982
0.0045 0.168585 0.193594 0.180416 0.20898 0.17491 0.205321 0.115761 0.125421
0.0C46 0.1685U5 0.176735 0.180416 0.190938 0.17491 0.18783 0.115761 0.113845
0.0047 0.168585 0.159817 0.180416 0.172896 0.17491 0.170339 0.115761 0.102269
0.0048 0.168585 0.143018 0.180416 0.154855 0.17491 0.152848 0.115761 0.090693
0.0049 0.168585 0.12616 0.180416 0.136813 0.17491 0.135357 0.115761 0.079117
0.005 0.168585 0.109301 0.180416 0.118772 0.17491 0.117866 0.115761 0.067541

0.0051 0.168585 0.092443 0.180416 0.10073 0.17491 0.100375 0.115761 0.055965
0.0052 0.168585 0.075584 0.180416 0.082688 0.17491 0.082884 0.115761 0.044389
0.0053 0.168585 0.058726 0.180416 0.064647 0.17491 0.065393 0.115761 0.032813
0.0054 0.168585 0.041867 0.180416 0.046605 0.17491 0.047902 0.115761 0.021237
0.0055 0.025009 0.025009 0.028564 0.028564 0.030411 0.030411 0.009661 0.009661
0.0056 0.025009 0.022508 0.028564 0.025707 0.030411 0.02737 0.009661 0.008695
0.0057 0.025009 0.020007 0.028564 0.022851 0.030411 0.024329 0.009661 0.007729
0.0058 0.025009 0.017506 0.028564 0.019995 0.030411 0.021288 0.009661 0.006763
0.0059 0.025009 0.015005 0.028564 0.017138 0.030411 0.018247 0.009661 0.005797

0.006 0.025009 0.012504 0.028564 0.014282 0.030411 0.015205 0.009661 0.00483
0.0061 0.025009 0.010004 0.028564 0.011425 0.030411 0.012164 0.009661 0.003864
0.0062 0.025009 0.007503 0.028564 0.008569 0.030411 C.009123 0.009661 0.002898
0.0063 0.025009 0.005002 0.028564 0.005713 0.030411 0.006082 0.009661 0.001932
0.0064 0.025009 0.002501 0..028564 0.002856 0.030411 0.003041 0.009661 0.000966
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Bayesian Expert Information Binomial TBPI Calculations

Phase I
Z(p(SjyI) 2.03E-05 0.00423 0.109058 0.492242 0.304215 0.090234

Phase II
K(p(DtYi) 0.000214 0.013039 0.174326 0.516565 0.238501 0.057355

Phase I Ixtension
x(p(S1T1) 1.91-OS 0.004053 0.106385 0.488931 0.307683 0.092929

Combined Phases
E(p(olyt) 2.011-07 0.000456 0.040409 0.391317 0.40066 0.167158

I Ph 1 x=29 Ph 1-ext x-29 Ph 2 z-28 Combined x=26
0.0005 2.uIE-05 0.113308 1.91K-OS 0.110457 0.000214 0.170146 2.011-07 0.028742
0.0006 2.03K-05 0.16253 1.91K-05 0.159348 0.000214 0.187558 2.011-07 0.032783
0.0007 2.03E-05 0.211753 1.91E-O05 0.208239 0.000214 0.239193 2.019-07 0.036824
0.0008 2.03K-05 0.260975 1.91E-05 0.257131 0.000214 0.290820 2.015-07 0.040865
0.0009 2.03-05 0.310197 1.91K-05 0.306022 0.000214 0.342463 2.013-07 0.U79997
0.001 2.031-05 0.359419 1.91K-05 0.354913 0.000214 0.394098 2.013-07 0.119128

0.0011 2.03K-05 0.408641 1.91K-05 0.403804 0.000214 0.445733 2.01E-07 0.15826
0.0012 2.033-05 0.457864 1.91K-O05 0.452695 0.000214 0.497368 2.01E-07 0.197392
0.0013 2.031-05 0.501086 1.913-05 0.501587 0.000214 0.549003 2.013-07 0.236524
0.0014 2.031-05 0.556308 1.911-05 0.550478 0.000214 0.600638 2.011-07 0.275655
0.0015 0.00423 0.60553 0.004053 0.599369 0.013039 0.652273 0.000456 0.314787
0.0016 0.00423 0.635529 0.004053 0.629732 0.013039 0.702626 0.000456 0.353873
0.0017 0.00423 0.665527 0.004053 0.660095 0.013039 0.725172 0.000456 0.392959
0.0018 0.00423 0.695526 0.004053 0.690458 0.013039 0.747718 0.000456 0.432045
0.0019 0.00423 0.725524 0.004053 0.720821 0.013039 0.770265 0.000456 0.472066

0.002 0.00423 0.755523 0.004053 0.751184 0.013039 0.792811 0.000456 0.512086
0.0021 0.00423 0.785521 0.004053 0.781547 0.013039 0.815357 0.000456 0.552107
0.0022 0.00423 0.81552 0.004053 0.81191 0.013039 0.837904 0.000456 0.592127
0.0023 0.00423 0.845S10 0.004053 0.842273 0.013039 0.86045 0.000456 0.632147
0.0024 0.00423 0.875317 0.004053 0.872636 0.013039 0.882996 0.000456 0.672168
0.0025 0.109058 0.905515 0.106385 0.902999 0.174326 0.905542 0.040409 0.712188
0.002b 0.109058 0.903633 0.106385 0.901653 0.174326 0.91196 0.040409 0.748213
0.0027 0.109058 0.90175 0.106385 0.900307 0.174326 0.900263 0.040409 0.784238
0.0028 0.109058 0.899868 0.106385 0.898962 0.17432S 0.888566 0.040409 0.320264
0.0029 0.109058 0.897986 0.106385 0.897616 0.174326 0.8?6868 0.040409 0.832938

0.-003 0.109058 0.896103 0.106385 0.896271 0.174326 0.865171 0.040409 0.845613
0.0031 0.109058 0.894221 0.106385 0.894925 0.174326 0.853474 0.040409 0.858288
0.0032 0.109058 0.092339 0.106385 0.89358 0.174326 0.841777 0.040409 0.870963
0.0033 0.109058 0.890456 0.106385 0.892234 0.174326 0.83008 0.040409 0.883638
0.0034 0.109058 0.888574 0.106385 0.890889 0.174326 0.818383 0.040409 0.896313
0.0035 0.492242 0.88bb92 0.488931 0.889543 0.516565 0.806686 0.391317 0.908988
0.0036 0.492242 0.837468 0.488931 0.84065 0.516565 0.760765 0.391317 0.886572
0.0037 0.492242 0.788243 0.488931 0.791757 0.51656S 0.709108 0.391317 0.864156
0.0030 0.492242 0.739019 0.438931 0.742864 0.516565 0.657452 0.391317 0.84174
0.0039 0.492242 0.689795 0.488931 0.693971 0.516565 0.605795 0.391317 0.802608

0.004 0.492242 0.640571 0.488931 0.645078 0.516565 0.554139 0.391317 0.763476
0.0041 0.492242 0.591346 0.488931 0.596184 0.516565 0.502482 0.391317 0.724345
0.0042 0.492242 0.542122 0.488931 0.547291 0.516565 0.450826 0.391317 0.685213
0.0043 0.492242 0.492U98 0.488931 0.498398 0.516565 0.399169 0.391317 0.646081
0.0044 0.492242 0.443674 0.488931 0.449505 0.516565 0.347513 0.391317 0.606949
0.0045 0.304215 0.39445 0.307683 0.400612 0.238501 0.295856 0.40066 0.567818
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0.0046 0.304215 0.364028 0.307683 0.369844 0.238501 0.272006 0.40066 0.527752
0.0047 0.304215 0.333607 0.301683 0.339075 0.238501 0.248156 0.40066 0.487686
0.0048 0.304215 0.303185 0.307683 0.308307 0.238501 0.224306 0.40066 0.44762
0.0049 0.304215 0.272763 0.307683 0.277539 0.238501 0.200456 0.40066 0.407554

0.005 0.304215 0.242342 0.307683 0.246771 0.238501 0.176605 0.40066 0.367488
0.0051 0.304215 0.21192 0.307683 0.216002 0.238501 0.152755 0.40066 0.327422
0.0052 0.304215 0.181499 0.307683 0.185234 0.238501 0.128905 0.40066 0.287356
0.0053 0.304215 0.151077 0.307683 0.154466 0.238501 0.105055 0.40066 0.24729
0.0054 0.304215 0.120656 0.307683 0.123698 0.238501 0.081205 0.40066 0.207224
0.0055 0.090234 0.090234 0.092929 0.092929 0.057355 0.057355 0.167158 0.167158
0.0056 0.090234 0.081211 0.092929 0.083636 0.057355 0.051619 0.167158 0.150442
0.0051 0.090234 0.072187 0.092929 0.074344 0.057355 0.045884 0.167158 0.133726
0.0058 0.090234 0.063164 0.092929 0.065051 0.057355 0.040148 0.167158 0.11701
0.0059 0.090234 0.054141 0.092929 0.055758 0.057355 0.034413 0.167158 0.100295
0.006 0.090234 0.045117 0.092929 0.046465 0.057355 0.028677 0.167158 0.083579

0.0061 0.090234 0.036094 0.092929 0.037172 0.057355 0.022942 0.167158 0.066863
0.0062 0.090234 0.02707 0.092929 0.027879 0.057355 0.017206 0.167158 0.050147
0.0063 0.090234 0.018047 0.092929 0.018586 0.057355 0.011471 0.167158 0.033432
0.0064 0.090234 0.009023 0.092929 0.009293 0.057355 0.005735 0.167158 0.016716
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